Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
New Phytol ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149918

ABSTRACT

Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive. We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development. Mechanistically, RACK1 could reinforce the phyB-SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene CYCD3;1, leading to the release of BES1-mediated inhibition of CYCD3;1 transcription, and hence the promotion of root meristem development. Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.

2.
J Integr Plant Biol ; 66(5): 956-972, 2024 May.
Article in English | MEDLINE | ID: mdl-38558526

ABSTRACT

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Receptors for Activated C Kinase , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Hypocotyl/growth & development , Hypocotyl/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Gene Expression Regulation, Plant/radiation effects , Light , Signal Transduction , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Light Signal Transduction , Phosphorylation
3.
J Exp Bot ; 75(13): 3932-3945, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38602261

ABSTRACT

ABSCISIC ACID INSENSITIVE5 (ABI5), a key regulator of the abscisic acid (ABA) signalling pathway, plays a fundamental role in seed germination and post-germinative development. However, the molecular mechanism underlying the repression function of ABI5 remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein Receptor for Activated C Kinase 1 (RACK1) is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype is rescued by a mutation in ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 may also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently reducing ABA signalling in seed germination and post-germinative growth. In addition, molecular analyses demonstrated that ABI5 may bind to the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signalling in acute seed germination and early plant development.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Germination , Receptors for Activated C Kinase , Seeds , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/physiology , Abscisic Acid/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Signal Transduction
5.
Am J Cancer Res ; 13(7): 3246-3256, 2023.
Article in English | MEDLINE | ID: mdl-37559991

ABSTRACT

Resistance to HER2-targeted therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB/CD137 is a promising drug target as a costimulatory molecule of immune cells, no therapeutic drug has been approved in the clinic because of systemic toxicity or limited efficacy. Previously, we developed a humanized anti-HER2 monoclonal antibody (mAb) HuA21 and anti-4-1BB mAb HuB6 with distinct antigen epitopes for cancer therapy. Here, we generated an Fc-muted IgG4 HER2/4-1BB bispecific antibody (BsAb) HK006 by the fusion of HuB6 scFv and HuA21 Fab. HK006 exhibited synergistic antitumor activity by blocking HER2 signal transduction and stimulating the 4-1BB signaling pathway simultaneously and strictly dependent on HER2 expression in vitro and in vivo. Strikingly, HK006 treatment enhanced antitumor immunity by increasing and activating tumor-infiltrating T cells. Moreover, HK006 did not induce nonspecific production of proinflammatory cytokines and had no obvious toxicity in mice. Overall, these data demonstrated that HK006 should be a promising candidate for HER2-positive cancer immunotherapy.

6.
J Glob Antimicrob Resist ; 34: 30-38, 2023 09.
Article in English | MEDLINE | ID: mdl-37315738

ABSTRACT

OBJECTIVES: The incidence of Helicobacter pylori (HP) is 25-50% in developed countries and 80% in developing countries, including 56.2% in China. However, antibiotic resistance of HP is a threat to HP control. The purpose of this study was to comprehensively evaluate primary drug resistance of HP in China. METHODS: The full text of reports of the primary antibiotic resistance prevalence of HP was obtained from multiple databases (PubMed, Web of Science, Evimed, Cochrane Library, and China National Knowledge Internet). Review Manager 5.2 was adopted for meta-analysis, sensitivity analysis, and bias analysis. The Newcastle-Ottawa Scale was used to assess the article quality. RESULTS: In total, 38804 HP samples from 22 trials were extracted. The results suggested that the overall prevalence of amoxicillin, clarithromycin, metronidazole, and levofloxacin resistance among HP in adults was as follows: mean difference (MD) = 1.35%, 95% confidence interval (CI) [1.03%, 1.68%]; MD = 23.76%, 95% CI [20.23%, 27.3%]; MD = 69.32%, 95% CI [64.85%, 73.8%]; and MD = 29.45%, 95% CI [4.90, 176.96], respectively. From the results of sensitivity and publication bias, we find that these results are robust and had little publication bias. CONCLUSION: Our research showed that in China, the prevalence of HP resistance to primary antibiotics warrants attention, especially with regard to metronidazole, levofloxacin, and clarithromycin.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Adult , Humans , Metronidazole/pharmacology , Clarithromycin/pharmacology , Levofloxacin/pharmacology , Helicobacter pylori/genetics , Helicobacter Infections/epidemiology , Helicobacter Infections/drug therapy , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , China/epidemiology
7.
Cell Mol Biol Lett ; 28(1): 47, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37259060

ABSTRACT

BACKGROUND: Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS: HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS: HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION: We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.


Subject(s)
Antibodies, Bispecific , Colorectal Neoplasms , Programmed Cell Death 1 Receptor , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Immunotherapy , Macaca fascicularis , Antibodies, Bispecific/pharmacology
8.
Environ Pollut ; 319: 120973, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36584859

ABSTRACT

Bioremediation with photosynthetic bacteria (PSB) is thought to be a promising removal method for hexavalent chromium [Cr(VI)]-containing wastewater. In the present study, Rhodobacter sphaeroides (R. sphaeroides) SC01 was used for the investigation of Cr(VI) removal in Cr(VI)-contaminated solution in the presence of melatonin. It was found that exogenous melatonin alleviated oxidative damage to R. sphaeroides SC01, increased Cr (VI) absorption capacity of cell membrane, and improved the reduction efficiency of Cr(VI) via the activation of chromate reductants. The results showed that melatonin could further promote the increase in Cr(VI) removal efficiency, reaching up to 97.8%. Furthermore, melatonin application resulted in 296.9%, 44.4%, and 69.7% upregulation of ascorbic acid (AsA), glutathione (GSH), and cysteine (Cys) relative to non-melatioin treated R. sphaeroides SC01 at 48 h. In addition, the resting cells, cell-free supernatants (CFS), and cell-free extracts (CFE) with melatonin had a higher Cr(VI) removal rate of 18.6%, 82.0%, and 15.2% compared with non-melatonin treated R. sphaeroides SC01. Fourier transform infrared spectroscopy (FTIR) revealed that melatonin increased the binding of Cr(III) with PO43- and CO groups on cell membrane of R. sphaeroides SC01. X-ray diffractometer (XRD) analysis demonstrated that melatonin remarkably bioprecipitated the production of CrPO4·6H2O in R. sphaeroides SC01. Hence, these results indicated that melatonin plays the important role in the reduction and uptake of Cr(VI), demonstrating it is a great promising strategy for the management of Cr(VI) contaminated wastewater in photosynthetic bacteria.


Subject(s)
Melatonin , Rhodobacter sphaeroides , Water Pollutants, Chemical , Rhodobacter sphaeroides/metabolism , Antioxidants , Melatonin/pharmacology , Wastewater , Chromium/chemistry , Adsorption , Water Pollutants, Chemical/analysis
9.
Antibiotics (Basel) ; 11(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36290042

ABSTRACT

The effectiveness of piperacillin/tazobactam for managing nosocomial pneumonia caused by extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae is unknown. To answer this question, we conducted a retrospective cohort study in two tertiary teaching hospitals of patients admitted between January 2018 and July 2021 with a diagnosis of nosocomial pneumonia caused by ESBL-producing K. pneumoniae receiving either piperacillin/tazobactam or carbapenems within 24 h from the onset of pneumonia for at least 72 h. Clinical outcomes, including 28-day mortality and 14-day clinical and microbiological cure, were analyzed. Of the 136 total patients, 64 received piperacillin/tazobactam and 72 received carbapenems. The overall 28-day mortality was 19.1% (26/136). In the inverse probability of treatment weighted cohort, piperacillin/tazobactam therapy was not associated with worse clinical outcomes, as the 28-day mortality (OR, 0.82, 95% CI, 0.23-2.87, p = 0.748), clinical cure (OR, 0.94, 95% CI, 0.38-2.35, p = 0.894), and microbiological cure (OR, 1.10, 95% CI, 0.53-2.30, p = 0.798) were comparable to those of carbapenems. Subgroup analyses also did not demonstrate any statistical differences. In conclusion, piperacillin/tazobactam could be an effective alternative to carbapenems for treating nosocomial pneumonia due to ESBL-producing K. pneumoniae when the MICs are ≤8 mg/L.

10.
J Transl Med ; 20(1): 415, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076251

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies and the patient survival rate remains unacceptably low. The anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody-based immune checkpoint inhibitors have been added to CRC treatment regimens, however, only a fraction of patients benefits. As an important co-stimulatory molecule, 4-1BB/CD137 is mainly expressed on the surface of immune cells including T and natural killer (NK) cells. Several agonistic molecules targeting 4-1BB have been clinically unsuccessful due to systemic toxicity or weak antitumor effects. We generated a humanized anti-4-1BB IgG4 antibody, HuB6, directed against a unique epitope and hypothesized that it would promote antitumor immunity with high safety. METHODS: The antigen binding specificity, affinity and activity of HuB6 were determined by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), biolayer interferometry (BLI) and flow cytometry. The antitumor effects were evaluated in humanized mice bearing syngeneic tumors, and possible toxicity was evaluated in humanized mice and cynomolgus monkeys. RESULTS: HuB6 showed high specificity and affinity for a binding epitope distinct from those of other known 4-1BB agonists, including utomilumab and urelumab, and induced CD8 + T, CD4 + T and NK cell stimulation dependent on Fcγ receptor (FcγR) crosslinking. HuB6 inhibited CRC tumor growth in a dose-dependent manner, and the antitumor effect was similar with urelumab and utomilumab in humanized mouse models of syngeneic CRC. Furthermore, HuB6 combined with an anti-PD-L1 antibody significantly inhibited CRC growth in vivo. Additionally, HuB6 induced antitumor immune memory in tumor model mice rechallenged with 4 × 106 tumor cells. Toxicology data for humanized 4-1BB mice and cynomolgus monkeys showed that HuB6 could be tolerated up to a 180 mg/kg dose without systemic toxicity. CONCLUSIONS: This study demonstrated that HuB6 should be a suitable candidate for further clinical development and a potential agent for CRC immunotherapy.


Subject(s)
Colorectal Neoplasms , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Colorectal Neoplasms/drug therapy , Epitopes , Immunotherapy , Macaca fascicularis , Mice , Receptors, IgG
11.
Front Plant Sci ; 13: 840350, 2022.
Article in English | MEDLINE | ID: mdl-35845692

ABSTRACT

TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors TEOSINTE BRANCHED1/CYCLOIDEA/PCF have been suggested to control the cell growth and proliferation in meristems and lateral organs. A total of 37 CsTCP genes were identified and divided into two classes, class I (PCF, group 1) and class II (CIN CYC/TB1, groups 2, and 3). The residues of TEOSINTE BRANCHED1/CYCLOIDEA/PCF of Camellia sinensis (Tea plant) (CsTCP) proteins between class I and class II were definitely different in the loop, helix I, and helix II regions; however, eighteen conserved tandem was found in bHLH. There are a large number of CsTCP homologous gene pairs in three groups. Additionally, most CsTCP proteins have obvious differences in motif composition. The results illuminated that CsTCP proteins in different groups are supposed to have complementary functions, whereas those in the same class seem to display function redundancies. There is no relationship between the number of CsTCP gene members and genome size, and the CsTCP gene family has only expanded since the divergence of monocots and eudicots. WGD/segmental duplication played a vital role in the expansion of the CsTCP gene family in tea plant, and the CsTCP gene family has expanded a lot. Most CsTCP genes of group 1 are more widely and non-specifically expressed, and the CsTCP genes of group 2 are mainly expressed in buds, flowers, and leaves. Most genes of group 1 and some genes of group 2 were up-/downregulated in varying degrees under different stress, CsTCP genes of group 3 basically do not respond to stress. TCP genes involved in abiotic stress response mostly belong to PCF group. Some CsTCP genes may have the same function as the homologous genes in Arabidopsis, but there is functional differentiation.

13.
Infect Dis Ther ; 10(4): 2415-2429, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34374953

ABSTRACT

INTRODUCTION: Tigecycline is a potential alternative to trimethoprim-sulfamethoxazole in treating Stenotrophomonas maltophilia infections due to its potent in vitro antimicrobial activity. Clinical evidence regarding the use of tigecycline in the treatment of S. maltophilia infections is scarce. In this study, we assessed the efficacy of tigecycline treating ventilator-associated pneumonia (VAP) due to S. maltophilia in comparison with fluoroquinolones. METHODS: This is a multicenter retrospective cohort study of patients admitted between January 2017 and December 2020 with the diagnosis of VAP caused by S. maltophilia receiving either tigecycline or fluoroquinolones as the definitive therapy ≥ 48 h. Clinical outcomes including 28-day mortality, clinical cure and microbiological cure were analyzed. RESULTS: Of 82 patients with S. maltophilia VAP included, 46 received tigecycline, and 36 received fluoroquinolones; 70.7% of patients had polymicrobial pneumonia, and the appropriate empiric therapy was applied to only 14.6% of patients. The overall 28-day mortality was 39%. Compared with patients receiving fluoroquinolones, tigecycline therapy resulted in worse clinical cure (32.6% vs. 63.9%, p = 0.009) and microbiological cure (28.6% vs. 59.1%, p = 0.045), while there was no statistical difference between 28-day mortality (47.8% vs. 27.8%, p = 0.105) in the two groups. Similar results were also shown in the inverse probability of treatment weighted univariable regression model and multivariable regression model. CONCLUSIONS: The standard dose of tigecycline therapy was associated with a lower clinical and microbiological cure rate but not associated with an increased 28-day mortality in patients with S. maltophilia VAP compared with fluoroquinolones. Considering the unfavorable clinical outcomes, we therefore recommend against using the standard dose of tigecycline in treating S. maltophilia VAP unless new clinical evidence emerges.

14.
Genomics ; 112(3): 2194-2202, 2020 05.
Article in English | MEDLINE | ID: mdl-31870711

ABSTRACT

SQUAMOSA promoter-binding protein (SBP)-box gene family is one kind of plant-specific transcription factor that plays important roles in the process of resisting abiotic stress. The SBP-box gene family has been studied in many species, but their functions are not yet clear in Camellia sinensis var. sinensis (CSS) (tea) plants. In our study, 25 SBP-box genes in the CSS were identified in the reference genome and classified into six groups based on a phylogenetic tree. The expression pattern of CsSBP genes under temperature stresses showed that CsSBPs were involved in the process of resisting temperature stresses. CsSBP8 had a positive effect on the anthocyanin accumulation during high temperature exposures, but CsSBP12 has a high correlation with anthocyanin accumulation during both high and low temperature. This study provides a foundation for the further study of CsSBP genes involved in the anthocyanin biosynthesis pathway during the temperature stress in tea.


Subject(s)
Camellia sinensis/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Anthocyanins/metabolism , Camellia sinensis/metabolism , Genome, Plant , MicroRNAs/metabolism , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Plant Proteins/metabolism , Promoter Regions, Genetic , Sequence Alignment , Sequence Analysis, Protein , Temperature , Transcription Factors/chemistry , Transcription Factors/classification , Transcription Factors/metabolism
15.
Tree Physiol ; 39(9): 1583-1599, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31135909

ABSTRACT

To determine the mechanisms in tea plants responding to temperature stresses (heat and cold), we examined the global transcriptomic and metabolomic profiles of the tea plant cultivar 'Suchazao' under moderately low temperature stress (ML), severely low temperature stress (SL), moderately high temperature stress (MH) and severely high temperature stress (SH) using RNA-seq and high performance liquid chromatography tandem mass spectrometry/mass spectrometry (HPLC-MS/MS), respectively. The identified differentially expressed genes indicated that the synthesis of stress-resistance protein might be redirected to cope with the temperature stresses. We found that heat shock protein genes Hsp90 and Hsp70 played more critical roles in tea plants in adapting to thermal stress than cold, while late embryogenesis abundant protein genes (LEA) played a greater role under cold than heat stress, more types of zinc finger genes were induced under cold stress as well. In addition, energy metabolisms were inhibited by SH, SL and ML. Furthermore, the mechanisms of anthocyanin synthesis were different under the cold and heat stresses. Indeed, the CsUGT75C1 gene, encoding UDP-glucose:anthocyanin 5-O-glucosyl transferase, was up-regulated in the SL-treated leaves but down-regulated in SH. Metabolomics analysis also showed that anthocyanin monomer levels increased under SL. These results indicate that the tea plants share certain foundational mechanisms to adjust to both cold and heat stresses. They also developed some specific mechanisms for surviving the cold or heat stresses. Our study provides effective information about the different mechanisms tea plants employ in surviving cold and heat stresses, as well as the different mechanisms of anthocyanin synthesis, which could speed up the genetic breeding of heat- and cold-tolerant tea varieties.


Subject(s)
Camellia sinensis , Anthocyanins , Biosynthetic Pathways , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolomics , Plant Proteins , Tandem Mass Spectrometry , Temperature , Transcriptome
16.
Mar Drugs ; 16(12)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486413

ABSTRACT

This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.


Subject(s)
Hyperuricemia/drug therapy , Laminaria/chemistry , Polysaccharides/pharmacology , Renal Elimination/drug effects , Uric Acid/metabolism , Adenine/toxicity , Animals , Blood Urea Nitrogen , Creatinine/blood , Creatinine/urine , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Hyperuricemia/chemically induced , Hyperuricemia/urine , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Polysaccharides/isolation & purification , Polysaccharides/therapeutic use , Treatment Outcome , Uric Acid/blood , Uric Acid/urine
17.
PLoS One ; 13(10): e0205891, 2018.
Article in English | MEDLINE | ID: mdl-30379951

ABSTRACT

Aconitum carmichaelii, commonly known as Fuzi, is a typical traditional Chinese medicine (TCM) herb that has been grown for more than one thousand years in China. Although root rot disease has been seriously threatening this crop in recent years, few studies have investigated root rot disease in Fuzi, and no pathogens have been identified. In this study, fungal libraries from rhizosphere soils were constructed by internal transcribed spacer (ITS) sequencing using the HiSeq 2500 high-throughput platform. A total of 948,843 tags were obtained from 17 soil samples, and these corresponded to 195,583,495 nt. At 97% identity, the libraries yielded 12,266 operational taxonomic units (OTUs), of which 97.5% could be annotated. In sick soils, Athelia, Mucor and Mortierella were the dominant fungi, comprising 10.3%, 10.1% and 7.7% of the fungal community, respectively. These fungi showed 2.6-, 1.53- to 6.31- and 1.38- to 2.65-fold higher enrichment in sick soils compared with healthy soils, and their high densities reduced the fungal richness in the areas surrounding the rotted Fuzi roots. An abundance analysis suggested that A. rolfsii and Mucor racemosus, as the dominant pathogens, might play important roles in the invading Fuzi tissue, and Phoma adonidicola could be another pathogenic fungus of root rot. In contrast, Mortierella chlamydospora, Penicillium simplicissimum, Epicoccum nigrum, Cyberlindnera saturnus and Rhodotorula ingeniosa might antagonize root rot pathogens in sick soils. In addition, A. rolfsii was further verified as a main pathogen of Fuzi root rot disease through hypha purification, morphological observation, molecular identification and an infection test. These results provide theoretical guidance for the prevention and treatment of Fuzi root rot disease.


Subject(s)
Aconitum/microbiology , DNA, Fungal/genetics , DNA, Intergenic/genetics , Fungi/genetics , Plant Roots/microbiology , Soil Microbiology , Biodiversity , Expressed Sequence Tags , Fungi/classification , Fungi/isolation & purification , Fungi/pathogenicity , Genomic Library , High-Throughput Nucleotide Sequencing , Mortierella/classification , Mortierella/genetics , Mortierella/isolation & purification , Mortierella/pathogenicity , Penicillium/classification , Penicillium/genetics , Penicillium/isolation & purification , Penicillium/pathogenicity , Phylogeny , Plant Diseases/microbiology , Rhizosphere , Rhodotorula/classification , Rhodotorula/genetics , Rhodotorula/isolation & purification , Rhodotorula/pathogenicity , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification , Saccharomycetales/pathogenicity , Soil/chemistry
18.
Exp Ther Med ; 14(6): 5889-5895, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29285137

ABSTRACT

The aim of this study was to determine the mechanisms driving the protective effects of squid ink polysaccharide (SIP) against cyclophosphamide (CP)-induced testicular damage, focusing on germ cells. In the testes of mice exposed to CP and/or SIP, the present study examined the levels of reactive oxygen species (ROS) and malondialdehyde, activity of superoxide dismutase levels, protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax), and total Caspase 3, activation of p-p38 and p-Akt proteins, and tissue morphology. The findings indicated that CP induced ROS production and oxidative stress, resulting in testicular damage. However, under administration of SIP, oxidative stress was impaired and the testicular toxicity induced by CP was weakened, which implied that SIP may have an important role in preventing chemotherapeutic damage to the male reproductive system via promoting antioxidant ability. Furthermore, the altered expression levels, including the upregulation of Bax and Caspase 3, downregulation of Bcl-2 and the increased Bax/Bcl-2 ratio, indicated that apoptosis occurred in CP exposed testes of mice; however, the alterations were reversed in mice treated with SIP. Moreover, in CP-exposed testes, p38 and Akt proteins were significantly phosphorylated (P<0.05), whereas in the testes of mice co-treated with SIP and CP, phosphorylation of the two proteins was inhibited, demonstrating that the two signalling pathways participated in the regulative processes of the deleterious effects caused by CP, and the preventive effects SIP mediated.

19.
Article in English | MEDLINE | ID: mdl-28872696

ABSTRACT

Hatching behavior is a key target in silkworm (Bombyx mori) rearing, especially for the control of Lepidoptera pests. According to previous research, hatching rhythms appear to be controlled by a clock mechanism that restricts or "gates" hatching to a particular time. However, the underlying mechanism remains elusive. Under 12-h light:12-h dark photoperiod (LD) conditions, the transcriptional levels of the chitinase5 (Cht5) and hatching enzyme-like (Hel) genes, as well as the enzymatic activities of their gene products, oscillated in time with ambient light cycles, as did the transcriptional levels of the cryptochrome 1, cryptochrome 2, period (per), and timeless genes, which are key components of the negative feedback loop of the circadian rhythm. These changes were related to the expression profile of the ecdysteroid receptor gene and the hatching behavior of B. mori eggs. However, under continuous light or dark conditions, the hatching behavior, the expression levels of Cht5 and Hel, as well as the enzymatic activities of their gene products, were not synchronized unlike under LD conditions. In addition, immunohistochemistry experiments showed that light promoted the translocation of PER from the cytoplasm to the nucleus. In conclusion, LD cycles regulate the hatching rhythm of B. mori via negative feedback loop of the circadian oscillator.


Subject(s)
Bombyx/physiology , Circadian Rhythm , Feedback, Physiological , Ovum/physiology , Photoperiod , Animals , Bombyx/embryology , Signal Transduction
20.
Carbohydr Polym ; 163: 270-279, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28267506

ABSTRACT

In our recent reports, a squid ink polysaccharide (SIP) was found having preventive activity against cyclophosphamide induced damage in mouse testis and ovary. Here we further reveal the regulative mechanism of SIP against chemical toxicity on testis. Leydig cells exposed to acrolein (ACR) underwent apoptosis at 12h and 24h. Before apoptosis, cells occurred autophagy that was confirmed by high autophagic rate and Beclin-1 protein content at 3h. PI3K/Akt and p38 MAPK signal pathways involved in the regulatory mechanisms. These outcomes of ACR were recovered completely by SIP, which was demonstrated by attenuated disruption of redox equilibrium and increased testosterone production, through suppressing ACR-caused autophagy and apoptosis regulated by PI3K/Akt and p38 MAPK signal pathways in Leydig cells. Summarily, autophagy occurred before apoptosis caused by ACR-activated p38 MAPK and PI3K/Akt pathways were blocked by SIP, resulting in survival and functional maintenance of Leydig cells.


Subject(s)
Apoptosis , Autophagy , Glycosaminoglycans/pharmacology , Leydig Cells/drug effects , Sepia/chemistry , Acrolein , Animals , Cells, Cultured , Male , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL