Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
Org Lett ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106520

ABSTRACT

Herein we unveil a visible-light-driven transition-metal-free 1,3-bromodifluoroallylation of [1.1.1]propellane. This reactivity is harnessed through organophotocatalysis, providing practical synthetic pathways to 1-brominated-3-gem-difluoroallylic bicyclo[1.1.1]pentane derivatives, particularly derived from readily available α-trifluoromethylalkenes and inexpensive KBr salts utilized as precursors for bromine radicals. Mechanistic investigations reveal that bromide anions quench the excited state of the photocatalyst, leading to the formation of bromine radicals, which react in a strain-release radical addition process rather than hydrogen atom abstraction with [1.1.1]propellane.

2.
Article in English | MEDLINE | ID: mdl-39136740

ABSTRACT

PURPOSE: Respiratory motion (RM) significantly impacts image quality in thoracoabdominal PET/CT imaging. This study introduces a unified data-driven respiratory motion correction (uRMC) method, utilizing deep learning neural networks, to solve all the major issues caused by RM, i.e., PET resolution loss, attenuation correction artifacts, and PET-CT misalignment. METHODS: In a retrospective study, 737 patients underwent [18F]FDG PET/CT scans using the uMI Panorama PET/CT scanner. Ninety-nine patients, who also had respiration monitoring device (VSM), formed the validation set. The remaining data of the 638 patients were used to train neural networks used in the uRMC. The uRMC primarily consists of three key components: (1) data-driven respiratory signal extraction, (2) attenuation map generation, and (3) PET-CT alignment. SUV metrics were calculated within 906 lesions for three approaches, i.e., data-driven uRMC (proposed), VSM-based uRMC, and OSEM without motion correction (NMC). RM magnitude of major organs were estimated. RESULTS: uRMC enhanced diagnostic capabilities by revealing previously undetected lesions, sharpening lesion contours, increasing SUV values, and improving PET-CT alignment. Compared to NMC, uRMC showed increases of 10% and 17% in SUVmax and SUVmean across 906 lesions. Sub-group analysis showed significant SUV increases in small and medium-sized lesions with uRMC. Minor differences were found between VSM-based and data-driven uRMC methods, with the SUVmax was found statistically marginal significant or insignificant between the two methods. The study observed varied motion amplitudes in major organs, typically ranging from 10 to 20 mm. CONCLUSION: A data-driven solution for respiratory motion in PET/CT has been developed, validated and evaluated. To the best of our knowledge, this is the first unified solution that compensates for the motion blur within PET, the attenuation mismatch artifacts caused by PET-CT misalignment, and the misalignment between PET and CT.

3.
ACS Nano ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109407

ABSTRACT

Rechargeable magnesium metal batteries (RMBs) have shown promising prospects in sustainable energy storage due to the high crustal abundance, safety, and potentially large specific capacity of magnesium. However, their development is constrained by the lack of effective cathode materials that can achieve high capacity and stable magnesium storage at a practically reasonable rate. Herein, we construct a three-dimensional (3D) iron(III)-dihydroxy-benzoquinone (Fe2(DHBQ)3) metal-organic framework (MOF) material with dual redox centers of Fe3+ cations and DHBQ2- anions for reversible storage of Mg2+ in RMBs. Spectroscopic analysis and density functional theory (DFT) calculations reveal the redox chemistry of both Fe3+ ions and carbonyls from DHBQ ligands during electrochemical processes. Benefiting from the rational structure, the Fe2(DHBQ)3∥Mg cells exhibit a high reversible capacity of 395.3 mAh/g, large energy density of 463.5 Wh/kg, and high power density of 2456.0 W/kg. Moreover, the high electronic conductivity (8.35 × 10-5 S/cm) and favorable diffusion path of Mg2+ in Fe2(DHBQ)3 endow the cells with exceptional cycling stability and rate capability with a long life of 5000 cycles at 2000 mA/g. The dual redox-active MOF demonstrates a category of advanced cathode materials for high-performance RMBs.

4.
Tissue Barriers ; : 2386183, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072526

ABSTRACT

Diabetes Mellitus presents a formidable challenge as one of the most prevalent and complex chronic diseases, exerting significant strain on both patients and the world economy. It is recognized as a common comorbidity among severely ill individuals, often leading to a myriad of micro- and macro-vascular complications. Despite extensive research dissecting the pathophysiology and molecular mechanisms underlying vascular complications of diabetes, relatively little attention has been paid to potential lung-related complications. This review aims to illuminate the impact of diabetes on prevalent respiratory diseases, including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), tuberculosis (TB), pneumonia infections, and asthma, and compare the vascular complications with other vascular beds. Additionally, we explore the primary mechanistic pathways contributing to these complications, such as the expression modulation of blood-tissue-barrier proteins, resulting in increased paracellular and transcellular permeability, and compromised immune responses rendering diabetes patients more susceptible to infections. The activation of inflammatory pathways leading to cellular injury and hastening the onset of these respiratory complications is also discussed.

5.
Molecules ; 29(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39064859

ABSTRACT

An electron donor-acceptor complex was utilized to generate alkoxy radicals from alcohols under mild conditions using visible light. This approach was combined with a hydroxybromination process to achieve the deconstructive functionalization of alkenes, leading to the production of geminal dibromides. Mechanistic investigations indicated the intermediacy of hypervalent iodine (III) compounds.

6.
BMC Med Imaging ; 24(1): 181, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048981

ABSTRACT

BACKGROUND: The study aimed to evaluate the diagnostic efficacy of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) parameters in distinguishing sinonasal lymphoma from sinonasal carcinoma. METHODS: Forty-two participants with histologically confirmed sinonasal lymphomas and fifty-two cases of sinonasal carcinoma underwent imaging with a 3.0T MRI scanner. DCE-MRI and DWI were conducted, and various parameters including type of time-intensity curve(TIC), time to peak, peak enhancement, peak contrast enhancement, washout rate, apparent diffusion coefficient (ADC), and relative ADC were measured. Binary logistic regression and receiver operating characteristic (ROC) curve analysis were employed to assess the diagnostic capability of individual and combined indices for differentiating nasal sinus lymphoma from nasal sinus carcinoma. RESULTS: Sinonasal lymphoma predominantly exhibited type II TIC(n = 20), whereas sinonasal carcinoma predominantly exhibited type III TIC(n = 23). Significant differences were observed in all parameters except washout ratio (p < 0.05), and ADC value emerged as the most reliable diagnostic tool in single parameter. Combined DCE-MRI parameters demonstrated superior diagnostic efficacy compared to individual parameters, with the highest efficiency (area under curve = 0.945) achieved when combining all parameters of DCE-MRI and DWI. CONCLUSIONS: Multiparametric evaluation involving contrast-enhanced dynamic MRI and DWI holds considerable diagnostic value in distinguishing sinonasal lymphoma from sinonasal carcinoma.


Subject(s)
Diffusion Magnetic Resonance Imaging , Lymphoma , Multiparametric Magnetic Resonance Imaging , Paranasal Sinus Neoplasms , Humans , Male , Female , Middle Aged , Diagnosis, Differential , Paranasal Sinus Neoplasms/diagnostic imaging , Lymphoma/diagnostic imaging , Adult , Aged , Case-Control Studies , Diffusion Magnetic Resonance Imaging/methods , Multiparametric Magnetic Resonance Imaging/methods , Contrast Media , Carcinoma/diagnostic imaging , ROC Curve , Sensitivity and Specificity , Young Adult
7.
Front Endocrinol (Lausanne) ; 15: 1406442, 2024.
Article in English | MEDLINE | ID: mdl-39040677

ABSTRACT

Background: Diabetes ranks among the most widespread diseases globally, with the kidneys being particularly susceptible to its vascular complications. The identification of proteins for pathogenesis and novel drug targets remains imperative. This study aims to investigate roles of circulating inflammatory proteins in diabetic renal complications. Methods: Data on the proteins were derived from a genome-wide protein quantitative trait locus (pQTL) study, while data on diabetic renal complications came from the FinnGen study. In this study, proteome-wide Mendelian randomization (MR) and colocalization analyses were used to assess the relationship between circulating inflammatory proteins and diabetic renal complications. Results: MR approach indicated that elevated levels of interleukin 12B (IL-12B) (OR 1.691, 95%CI 1.179-2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine (LIF) (OR 1.349, 95%CI 1.010-1.801, P=4.23×10-2) increased the risk of type 1 diabetes (T1D) with renal complications, while higher levels of fibroblast growth factor 19 (FGF19) (OR 1.202, 95%CI 1.009-1.432, P=3.93×10-2), fibroblast growth factor 23 (FGF23) (OR 1.379, 95%CI 1.035-1.837, P=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111-1.725, P=3.76×10-3), and TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066-1.451, P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with renal complications. Colocalization analysis supported these findings, revealing that most identified proteins, except for DNER, likely share causal variants with diabetic renal complications. Conclusion: Our study established associations between specific circulating inflammatory proteins and the risk of diabetic renal complications, suggesting these proteins as targets for further investigation into the pathogenesis and potential therapeutic interventions for T1D and T2D with renal complications.


Subject(s)
Diabetic Nephropathies , Mendelian Randomization Analysis , Proteome , Humans , Diabetic Nephropathies/blood , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Proteome/metabolism , Proteome/analysis , Male , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Female , Quantitative Trait Loci , Genome-Wide Association Study , Inflammation/blood , Inflammation/metabolism , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Biomarkers/blood , Middle Aged
8.
Exp Biol Med (Maywood) ; 249: 10101, 2024.
Article in English | MEDLINE | ID: mdl-39045601

ABSTRACT

Cerebral palsy (CP) is a prevalent motor disorder originating from early brain injury or malformation, with significant variability in its clinical presentation and etiology. Early diagnosis and personalized therapeutic interventions are hindered by the lack of reliable biomarkers. This study aims to identify potential biomarkers for cerebral palsy and develop predictive models to enhance early diagnosis and prognosis. We conducted a comprehensive bioinformatics analysis of gene expression profiles in muscle samples from CP patients to identify candidate biomarkers. Six key genes (CKMT2, TNNT2, MYH4, MYH1, GOT1, and LPL) were validated in an independent cohort, and potential biological pathways and molecular networks involved in CP pathogenesis were analyzed. The importance of processes such as functional regulation, energy metabolism, and cell signaling pathways in the muscles of CP patients was emphasized. Predictive models of muscle sample biomarkers related to CP were developed and visualized. Calibration curves and receiver operating characteristic analysis demonstrated that the predictive models exhibit high sensitivity and specificity in distinguishing individuals at risk of CP. The identified biomarkers and developed prediction models offer significant potential for early diagnosis and personalized management of CP. Future research should focus on validating these biomarkers in larger cohorts and integrating them into clinical practice to improve outcomes for individuals with CP.


Subject(s)
Biomarkers , Cerebral Palsy , Cerebral Palsy/genetics , Cerebral Palsy/diagnosis , Cerebral Palsy/metabolism , Humans , Biomarkers/metabolism , Male , Female , Computational Biology/methods , Gene Expression Profiling , Child, Preschool , Child , Prognosis
9.
Cells ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891022

ABSTRACT

Pulmonary surfactants play a crucial role in managing lung lipid metabolism, and dysregulation of this process is evident in various lung diseases. Alternations in lipid metabolism lead to pulmonary surfactant damage, resulting in hyperlipidemia in response to lung injury. Lung macrophages are responsible for recycling damaged lipid droplets to maintain lipid homeostasis. The inflammatory response triggered by external stimuli such as cigarette smoke, bleomycin, and bacteria can interfere with this process, resulting in the formation of lipid-laden macrophages (LLMs), also known as foamy macrophages. Recent studies have highlighted the potential significance of LLM formation in a range of pulmonary diseases. Furthermore, growing evidence suggests that LLMs are present in patients suffering from various pulmonary conditions. In this review, we summarize the essential metabolic and signaling pathways driving the LLM formation in chronic obstructive pulmonary disease, pulmonary fibrosis, tuberculosis, and acute lung injury.


Subject(s)
Lipid Metabolism , Lung Diseases , Humans , Lung Diseases/metabolism , Lung Diseases/pathology , Animals , Macrophages/metabolism , Macrophages, Alveolar/metabolism , Signal Transduction
10.
Chemistry ; : e202400963, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923685

ABSTRACT

The development of innovative methods for synthesizing silylcyclopentene compounds is particularly important for enriching and improving the synthetical toolbox of organosilicon compounds. Herein, a facile approach has been developed for the synthesis of silylcyclopentenes promoted by mechanochemically generated organolithium species as silicon nucleophiles under ball milling conditions, avoiding the requirement of large amounts of bulk solvent. This operationally simple method demonstrates good functional group compatibility, which provides a great opportunity for further exploration of the synthetic applications of silylcyclopentenes. Density functional theory calculations indicated that the transient lithiosilole intermediates undergo a stepwise nucleophilic addition process, which governs this mechanic-force-promoted [4+1] cycloaddition reaction.

11.
Int J Nanomedicine ; 19: 6085-6098, 2024.
Article in English | MEDLINE | ID: mdl-38911502

ABSTRACT

Introduction: Endometriosis (EM) is an estrogen-dependent benign gynecologic disease affecting approximately 10% of reproductive-age women with a high recurrence rate, but lacks reliable biomarkers. No previous studies have investigated the possible use of extracellular vesicle (EV)-associated micro RNAs (miRNAs) from menstrual blood (MB) as candidate diagnostic or prognostic markers of EM. Methods: Specimens were obtained from endometriosis and non-endometriosis patients at the International Peace Maternity and Child Health Hospital in Shanghai. Microarray was used to screen differentially expressed miRNAs among peritoneal fluid (PF), fallopian tube fluid (FF), and MB. Dual-luciferase reporter gene assay was carried out to verify the relationship between miR-4443 and ACSS2. Cell proliferation and Transwell invasion assays were performed in vitro after intervention on miR-4443 and ACSS2 in hEM15A human endometrial stromal cells and primary human endometrial stromal cells (hESCs). Spearman correlation analysis, receiver operating characteristic (ROC) curve analysis, and survival analysis were applied to clinical data, including severity of symptoms and relapse of EM among EM patients. Results: EV-associated miR-4443 was abundant in MB of endometriosis patients. ACSS2 knockdown and miR-4443 overexpression promoted cell proliferation and migration via the PI3K/AKT pathway. miR-4443 levels in MB-EVs were positively correlated with the degree of dyspareunia (r=0.64; P<0.0001) and dysmenorrhea (r=0.42; P<0.01) in the endometriosis group. ROC curve analyses showed an area under the curve (AUC) of 0.741 (95% CI 0.624-0.858; P<0.05) for miR-4443 and an AUC of 0.929 (95% CI 0.880-0.978; P<0.05) for the combination of miR-4443 and dysmenorrhea. Conclusion: MB-derived EV-associated miR-4443 might participate in endometriosis development, thus providing a new candidate biomarker for the noninvasive prediction of endometriosis recurrence.


Subject(s)
Cell Proliferation , Endometriosis , Extracellular Vesicles , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Endometriosis/metabolism , Endometriosis/genetics , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Adult , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Disease Progression , Cell Movement , Signal Transduction , Cell Line , Endometrium/metabolism , Endometrium/pathology
12.
Angew Chem Int Ed Engl ; : e202406585, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863281

ABSTRACT

Polymer electrolytes play a crucial role in advancing rechargeable magnesium batteries (RMBs) owing to their exceptional characteristics, including high flexibility, superior interface compatibility, broad electrochemical stability window, and enhanced safety features. Despite these advantages, research in this domain remains nascent, plagued by single preparation approaches and challenges associated with the compatibility between polymer electrolytes and Mg metal anode. In this study, we present a novel synthesis strategy to fabricate a glycerol α,α'-diallyl ether-3,6-dioxa-1,8-octanedithiol-based composite gel polymer electrolyte supported by glass fiber substrate (GDT@GF CGPE) through anion modification and thiol-ene click chemistry polymerization. The developed route exhibits novelty and high efficiency, leading to the production of GDT@GF CGPEs featuring exceptional mechanical properties, heightened ionic conductivity, elevated Mg2+ transference number, and commendable compatibility with Mg anode. The assembled modified Mo6S8||GDT@GF||Mg cells exhibit outstanding performance across a wide temperature range and address critical safety concerns, showcasing the potential for applications under extreme conditions. Our innovative preparation strategy offers a promising avenue for the advancement of polymer electrolytes in high-performance rechargeable magnesium batteries, while also opens up possibilities for future large-scale applications and the development of flexible electronic devices.

13.
Pharmacol Res ; 206: 107282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914383

ABSTRACT

Chronic inflammation is a common foundation for the development of many non-communicable diseases, particularly diabetes, atherosclerosis, and tumors. The activation of the axis involving Advanced Glycation End products (AGEs) and their receptor RAGE is a key promotive factor in the chronic inflammation process, influencing the pathological progression of these diseases. The accumulation of AGEs in the body results from an increase in glycation reactions and oxidative stress, especially pronounced in individuals with diabetes. By binding to RAGE, AGEs activate signaling pathways such as NF-κB, promoting the release of inflammatory factors, exacerbating cell damage and inflammation, and further advancing the formation of atherosclerotic plaques and tumor development. This review will delve into the molecular mechanisms by which the AGEs-RAGE axis activates chronic inflammation in the aforementioned diseases, as well as strategies to inhibit the AGEs-RAGE axis, aiming to slow or halt the progression of chronic inflammation and related diseases. This includes the development of AGEs inhibitors, RAGE antagonists, and interventions targeting upstream and downstream signaling pathways. Additionally, the early detection of AGEs levels and RAGE expression as biomarkers provides new avenues for the prevention and treatment of diabetes, atherosclerosis, and tumors.


Subject(s)
Glycation End Products, Advanced , Inflammation , Receptor for Advanced Glycation End Products , Signal Transduction , Humans , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Inflammation/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/metabolism , Atherosclerosis/pathology
14.
Environ Int ; 189: 108797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838486

ABSTRACT

Benzophenone (BP)-type UV filters are commonly added to sunscreens and cosmetics to protect against UV radiation for human skin and hair. As a result, BPs are ubiquitous in the environment and human body, and their endocrine-disrupting characteristics have been a hot topic of discussion. However, our knowledge regarding the detrimental effects of prenatal exposure to BPs on pregnant women and their offspring remains limited. To fill this gap, we determined five BP derivatives in 600 serum samples obtained from pregnant women. All the target analytes, except 2,4-dihydroxybenzophenone (BP-1), have achieved a 100 % detection rate. The most prevalent compound was 2-hydroxy-4-methoxybenzophenone (BP-3), with a median concentration of 0.545 ng/mL. Significant and positive correlations were observed among BP derivatives, indicating both endogenous metabolism and common external sources. Utilizing Bayesian kernel machine regression (BKMR) and quantile-based g-computation (QGC) models, we found relationships between BP exposure and reduced neonatal birth weight (BW) and birth chest circumference (BC) during the third trimester. Notably, the adverse effect of BPs on birth size was sex-specific. Moreover, triglyceride (TG) was identified as a potential mediator of the effect of BPs on blood pressure, and co-exposure to BPs was linked to disruptions in thyroid hormone levels and glucose regulation. Further research is warranted to unravel the toxicity of BPs and their detrimental effects on pregnant women and fetuses.


Subject(s)
Benzophenones , Maternal Exposure , Sunscreening Agents , Humans , Female , Pregnancy , China , Adult , Infant, Newborn , Maternal Health , Birth Weight/drug effects , Prenatal Exposure Delayed Effects , Male , Young Adult
15.
J Chem Theory Comput ; 20(13): 5717-5731, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38898771

ABSTRACT

Rapid advancements in machine-learning methods have led to the emergence of machine-learning-based interatomic potentials as a new cutting-edge tool for simulating large systems with ab initio accuracy. Still, the community awaits universal interatomic models that can be applied to a wide range of materials without tuning neural network parameters. We develop a unified deep-learning interatomic potential (the DPA-Semi model) for 19 semiconductors ranging from group IIB to VIA, including Si, Ge, SiC, BAs, BN, AlN, AlP, AlAs, InP, InAs, InSb, GaN, GaP, GaAs, CdTe, InTe, CdSe, ZnS, and CdS. In addition, independent deep potential models for each semiconductor are prepared for detailed comparison. The training data are obtained by performing density functional theory calculations with numerical atomic orbitals basis sets to reduce the computational costs. We systematically compare various properties of the solid and liquid phases of semiconductors between different machine-learning models. We conclude that the DPA-Semi model achieves GGA exchange-correlation functional quality accuracy and can be regarded as a pretrained model toward a universal model to study group IIB to VIA semiconductors.

16.
J Org Chem ; 89(14): 10379-10383, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38923888

ABSTRACT

Herein we present a catalytic cross-coupling strategy between C-radicals and Si-radicals, enabling the efficient, gentle, and versatile synthesis of dibenzylic silanes from para-quinone methides and silanecarboxylic acids as the stable silyl radical precursors. The reaction is facilitated by an inexpensive organophotocatalyst and exhibits broad compatibility with various electron-donating and electron-withdrawing functional groups. Notably, mechanistic investigations suggest the involvement of dibenzylic and silyl radicals, underscoring a novel radical coupling mechanism that introduces a fresh perspective on C-Si bond formation.

17.
Ecotoxicol Environ Saf ; 279: 116469, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772141

ABSTRACT

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphate ester that can adversely affect animal or human health. The intestinal microbiota is critical to human health. High-dose exposure to TDCIPP can markedly affect the intestinal ecosystem of mice, but the effects of long-term exposure to lower concentrations of TDCIPP on the intestinal flora and body metabolism remain unclear. In this study, TDCIPP was administered to Sprague-Dawley rats by gavage at a dose of 13.3 mg/kg bw/day for 90 days. TDCIPP increased the relative weight of the kidneys (P = 0.017), but had no effect on the relative weight of the heart, liver, spleen, lungs, testes, and ovaries (P > 0.05). 16 S rRNA gene sequencing revealed that long-term TDCIPP exposure affected the diversity, relative abundance, and functions of rat gut microbes. The serum metabolomics of the rats showed that TDCIPP can disrupt the serum metabolic profiles, result in the up-regulation of 26 metabolites and down-regulation of 3 metabolites, and affect multiple metabolic pathways in rat sera. In addition, the disturbed genera and metabolites were correlated. The functions of some disturbed gut microbes were consistent with the affected metabolic pathways in the sera, and these metabolic pathways were all associated with kidney disease, suggesting that TDCIPP may cause kidney injury in rats by affecting the intestinal flora and serum metabolism.


Subject(s)
Gastrointestinal Microbiome , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Male , Female , Kidney/drug effects , RNA, Ribosomal, 16S , Organophosphorus Compounds
18.
ChemSusChem ; : e202400515, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705848

ABSTRACT

The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm-2), enhanced charge separation efficiency (85 %), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.

19.
Exp Gerontol ; 192: 112451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729250

ABSTRACT

The NLRP3 inflammasome is critically involved in the development of depression. The E3 ubiquitin ligase TRIM31 negatively regulates this process by promoting the degradation of NLRP3 through the ubiquitin-proteasome pathway. Modified Danzhi Xiaoyaosan (MDZXYS) has shown good therapeutic effect in both preclinical and clinical depression treatments, yet the underlying mechanisms of its antidepressant effects are not fully understood. In the present study, we aimed to explore the antidepressant mechanisms of MDZXYS, focusing on NLRP3 activation and ubiquitin-mediated degradation. We employed rats with depression induced by chronic unpredictable mild stress (CUMS) and conducted various behavioral tests, including the sucrose preference, forced swimming, and open field tests. Neuronal damage in CUMS-treated rats was assessed using Nissl staining. We measured proinflammatory cytokine levels using ELISA kits and analyzed NLRP3/TRIM31 protein expression via Western blotting and immunofluorescence staining. Our results disclosed that MDZXYS reversed CUMS-induced depression-like behaviors in rats, reduced proinflammatory cytokine levels (IL-1ß), and ameliorated neuronal damage in the prefrontal cortex. Additionally, CUMS activated the NLRP3 inflammasome in the prefrontal cortex and upregulated the protein expression of TRIM31. After MDZXYS administration, the expression of NLRP3 inflammasome-associated proteins was reduced, while the expression level of TRIM31 was further increased. Through co-localized immunofluorescence staining, we observed a significant elevation in the co-localization expression of NLRP3 and TRIM31 in the prefrontal cortex of the MDZXYS group. These findings suggest that inhibiting NLRP3 inflammasome-mediated neuroinflammation by modulating the TRIM31signaling pathway may underlie the antidepressant effects of MDZXYS, and further support targeting NLRP3 as a novel approach for the prevention and treatment of depression.


Subject(s)
Antidepressive Agents , Depression , Drugs, Chinese Herbal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Stress, Psychological , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Depression/drug therapy , Depression/metabolism , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Stress, Psychological/complications , Stress, Psychological/drug therapy , Disease Models, Animal , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Behavior, Animal/drug effects
20.
J Hazard Mater ; 470: 134193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569341

ABSTRACT

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Subject(s)
Arsenicals , Iron Compounds , Iron , Minerals , Sulfides , Sulfides/chemistry , Iron/chemistry , Arsenicals/chemistry , Kinetics , Minerals/chemistry , Iron Compounds/chemistry , Oxidation-Reduction , Solubility , Arsenic/chemistry , Biofilms , Acidithiobacillus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL