Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Biochemistry (Mosc) ; 89(5): 973-986, 2024 May.
Article in English | MEDLINE | ID: mdl-38880656

ABSTRACT

Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Gynostemma , MicroRNAs , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Circular , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Plant Extracts
2.
Pacing Clin Electrophysiol ; 47(2): 275-280, 2024 02.
Article in English | MEDLINE | ID: mdl-38059637

ABSTRACT

BACKGROUND: Paroxysmal supraventricular tachycardia (PSVT) is characterized by episodes of rapid tachycardia with sudden onset and sudden termination. PSVT treatment has evolved considerably over the past 30 years. Currently, radiofrequency catheter ablation is the first-line treatment. HYPOTHESIS: We conducted a randomized controlled trial to compare safety and effectiveness of PSVT ablation between the Jinjiang and Johnson (J&J) catheters in 57 patients in our hospital. METHODS AND RESULTS: Patients were randomly assigned to ablation procedures using either the Jinjiang system or the J&J Carto system. Follow-up was performed 3 days, 1, and 6 months after the procedure. Success rate, ablation time, frequency of ablation, and rates of complications and recurrence did not significantly differ between the groups. One Jinjiang group patient (3.6%) experienced arrhythmia recurrence during the 6-month follow-up. CONCLUSIONS: The Jinjiang catheter for radiofrequency ablation of PSVT is as safe and effective as the J&J catheter.


Subject(s)
Catheter Ablation , Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Humans , Tachycardia, Paroxysmal/surgery , Catheter Ablation/methods , Tachycardia, Ventricular/surgery
3.
Circ Res ; 124(9): 1309-1322, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30801233

ABSTRACT

RATIONALE: TEAD (TEA domain transcription factor) 1-a major effector of the Hippo signaling pathway-acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear. OBJECTIVE: To assess the role of TEAD1 in vascular injury-induced smooth muscle proliferation and delineate the mechanisms underlying its action. METHODS AND RESULTS: We found that TEAD1 expression is enhanced in mouse femoral artery after wire injury and correlates with the activation of mTORC1 (mechanistic target of rapamycin complex 1) signaling in vivo. Using an inducible smooth muscle-specific Tead1 KO (knockout) mouse model, we found that specific deletion of Tead1 in adult VSMCs is sufficient to attenuate arterial injury-induced neointima formation due to inhibition of mTORC1 activation and VSMC proliferation. Furthermore, we found that TEAD1 plays a unique role in VSMCs, where it not only downregulates VSMC differentiation markers but also activates mTORC1 signaling, leading to enhanced VSMC proliferation. Using whole-transcriptome sequencing analysis, we identified Slc1a5 (solute carrier family 1 member 5)-a key glutamine transporter-as a novel TEAD1 target gene. SLC1A5 overexpression mimicked TEAD1 in promoting mTORC1 activation and VSMC proliferation. Moreover, depletion of SLC1A5 by silencing RNA or blocking SLC1A5-mediated glutamine uptake attenuated TEAD1-dependent mTORC1 activation and VSMC proliferation. CONCLUSIONS: Our study unravels a novel mechanism by which TEAD1 promotes VSMC proliferation via transcriptional induction of SLC1A5, thereby activating mTORC1 signaling and promoting neointima formation.


Subject(s)
Amino Acid Transport System ASC/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Glutamine/metabolism , Minor Histocompatibility Antigens/metabolism , Myocytes, Smooth Muscle/metabolism , Transcription Factors/metabolism , Amino Acid Transport System ASC/genetics , Animals , Biological Transport/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , DNA-Binding Proteins/genetics , Disease Models, Animal , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Minor Histocompatibility Antigens/genetics , Neointima/genetics , Neointima/metabolism , RNA Interference , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcriptional Activation , Up-Regulation
5.
Article in English | MEDLINE | ID: mdl-16850741

ABSTRACT

The effects of amiodarone on transmural dispersion of ventricular effective refractory periods (ERPs) in the normal and hypertrophic canine heart were investigated in vivo. By using the programmed stimulation protocol, the ERPs of epicardium (Epi), midmyocardium (Mid) and endocardium (Endo) were measured by inserting specially-designed electrodes into the three myocardial layers before and after mainlining of amiodarone. No significant ERPs-dispersion was observed in the three layers before and after mainlining of amiodarone in the normal group. In contrast, ERPs of all the three layers were prolonged in the hypertrophic heart, while the ERPs-dispersion was reduced significantly after mainlining of amiodarone. The ERPs-dispersion was significantly increased in the hypertrophic heart but not in the normal heart using "long-short" and "short-long" interval stimulation technique. It was concluded that (1) the differences in ERPs-dispersion among the three layers were significant in hypertrophic heart, and differences were not significant in normal canine heart; (2) ERPs of each three-myocardial layers were significantly prolonged after using amiodarone, but the ERPs-dispersion decreased in hypertrophic heart and (3) the programmed extrastimulus technique of "long-short" and "short-long" intervals increased the transmural ERPs-dispersion in the hypertrophic heart.


Subject(s)
Amiodarone/pharmacology , Cardiomegaly/physiopathology , Refractory Period, Electrophysiological/drug effects , Animals , Anti-Arrhythmia Agents/pharmacology , Dogs , Female , Male , Myocardium/metabolism , Rats , Ventricular Function/drug effects
6.
Article in English | MEDLINE | ID: mdl-16463655

ABSTRACT

The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischemia (AI) group and sham operation (SO) group. By using the monophasic action potential (MAP) technique, MAP and effective refractory period (ERP) of the three layers myocardium were measured by specially designed plunge needle electrodes and the transmural dispersion of repolarization (TDR) and transmural dispersion of ERP (TDE) were analyzed. The results showed that in the AI group, MAP duration (MAPD) was shortened from 201.67 +/- 21.42 ms to 169.50 +/- 13.81 ms (P < 0.05), but ERP prolonged to varying degrees and TDE increased during ischemia. In the SO group, MAPD and ERP did not change almost. Among of the three layers myocardium of canine, MAPD was coincident in two groups. It was concluded that during acute ischemia, MAPD was shortened sharply, but there was no significant difference among of the three layers myocardium. The prolonged ERP was concomitant with increased TDE during acute ischemia, which may play an important role in the occurrence of arrhythmias induced by acute ischemia. These findings may have important implications in arrhythmogenesis.


Subject(s)
Action Potentials/physiology , Myocardial Ischemia/physiopathology , Myocardium/metabolism , Refractory Period, Electrophysiological/physiology , Animals , Dogs , Electrodes , Heart/physiopathology , Male , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...