Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Medicine (Baltimore) ; 103(30): e39046, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058883

ABSTRACT

BACKGROUND: Chromosome 18p deletion syndrome is caused by total or partial deletion of the short arm of chromosome 18 and associated with cognitive impairment, growth retardation and mild facial dysmorphism. However, most studies on the genotype-phenotype correlations in the 18p region are diagnosed postnatally. Prenatal reports involving 18p deletions are limited. METHODS: Three pregnant women opted for invasive prenatal testing due to noninvasive prenatal testing indicating high risk for chromosome 18 abnormalities. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed simultaneously. The pregnancy outcomes for all cases were followed up. Meanwhile, we also made a literature review on prenatal phenotypes of 18p deletions. RESULTS: G-banding analysis showed that 2 fetuses presented abnormal karyotypes: 45,XN,der(18)t(18;21)(p11; q11),-21 (case 2) and 46,XN,18p- (case 3). The karyotype of case 1 was normal. Meanwhile, CMA detected 4.37 Mb (case 1), 7.26 Mb (case 2) and 14.97 Mb (case 3) deletions in chromosome 18p region. All 3 pregnancies were terminated finally according to genetic counseling based upon abnormal CMA results. CONCLUSION: Prenatal diagnosis of 18p deletion syndrome is full of challenges due to the phenotypic diversity, incomplete penetrance and lack of prenatal phenotypes. Increased nuchal translucency and holoprosencephaly are common prenatal phenotypes of distal 18p deletion. For fetuses carrying 18p deletions with atypical sonographic phenotypes, noninvasive prenatal testing could be adopted as an effective approach.


Subject(s)
Chromosome Deletion , Chromosome Disorders , Chromosomes, Human, Pair 18 , Microarray Analysis , Prenatal Diagnosis , Humans , Female , Chromosomes, Human, Pair 18/genetics , Pregnancy , Microarray Analysis/methods , Prenatal Diagnosis/methods , Adult , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Karyotyping/methods
2.
BMC Pregnancy Childbirth ; 24(1): 494, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039444

ABSTRACT

BACKGROUND: Chromosomal 16p11.2 deletions and duplications are genomic disorders which are characterized by neurobehavioral abnormalities, obesity, congenital abnormalities. However, the prenatal phenotypes associated with 16p11.2 copy number variations (CNVs) have not been well characterized. This study aimed to provide an elaborate summary of intrauterine phenotypic features for these genomic disorders. METHODS: Twenty prenatal amniotic fluid samples diagnosed with 16p11.2 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed in parallel. The pregnancy outcomes and health conditions of all cases after birth were followed up. Meanwhile, we made a pooled analysis of the prenatal phenotypes in the published cases carrying 16p11.2 CNVs. RESULTS: 20 fetuses (20/20,884, 0.10%) with 16p11.2 CNVs were identified: five had 16p11.2 BP2-BP3 deletions, 10 had 16p11.2 BP4-BP5 deletions and five had 16p11.2 BP4-BP5 duplications. Abnormal ultrasound findings were recorded in ten fetuses with 16p11.2 deletions, with various degrees of intrauterine phenotypic features observed. No ultrasound abnormalities were observed in any of the 16p11.2 duplications cases during the pregnancy period. Eleven cases with 16p11.2 deletions terminated their pregnancies. For 16p11.2 duplications, four cases gave birth to healthy neonates except for one case that was lost to follow-up. CONCLUSIONS: Diverse prenatal phenotypes, ranging from normal to abnormal, were observed in cases with 16p11.2 CNVs. For 16p11.2 BP4-BP5 deletions, abnormalities of the vertebral column or ribs and thickened nuchal translucency were the most common structural and non-structural abnormalities, respectively. 16p11.2 BP2-BP3 deletions might be closely associated with fetal growth restriction and single umbilical artery. No characteristic ultrasound findings for 16p11.2 duplications have been observed to date. Given the variable expressivity and incomplete penetrance of 16p11.2 CNVs, long-term follow-up after birth should be conducted for these cases.


Subject(s)
Chromosome Disorders , Chromosome Duplication , Chromosomes, Human, Pair 16 , Fetus , Phenotype , Chromosomes, Human, Pair 16/genetics , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Pregnancy Outcome/genetics , Prenatal Diagnosis , Fetus/abnormalities , Fetus/diagnostic imaging , Ultrasonography , Humans , Pregnancy , Infant, Newborn , Karyotyping , Retrospective Studies
3.
Chemosphere ; 363: 142807, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992445

ABSTRACT

As trace levels of thallium (Tl) in water are lethal to humans and ecosystems, it is essential to exploit advanced technologies for efficient Tl removal. In response to this concern, an innovative composite membrane was developed, incorporating polytetrafluoroethylene (PTFE) and featuring a dual-support system with polydopamine (PDA) and polyethyleneimine (PEI), along with bimetallic Prussian blue analogues (Co@Fe-PBAs) as co-supports. The composite membrane exhibited an exceptional Tl+-adsorption capacity (qm) of 186.1 mg g-1 when utilized for the treatment of water containing low concentration of Tl+ (0.5 mg⋅L-1). Transmission electron microscopy displayed the obvious Tl+ mapping inside the special hollow Co@Fe-PBAs crystals, demonstrating the deep intercalation of Tl+ via ion exchange and diffusion. The Tl+-adsorption capability of the composite membrane was not greatly affected by coexisting Na+, Ca2+ and Mg2+ as well as the tricky K+, indicating the excellent anti-interference. Co-doped PBAs enhanced ion exchange and intercalation of the composite membrane with Tl+ leading to excellent Tl+ removal efficiency. The composite membrane could efficiently remove Tl+ from thallium-contaminated river water to meet the USEPA standard. This study provides a cost-effective membrane-based solution for efficient Tl+ removal from Tl+-containing wastewater.

4.
Environ Res ; 260: 119604, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002636

ABSTRACT

Fluoride pollution and water scarcity are urgent issues. Reducing fluoride concentration in water is crucial. Kaolinite has been used to study adsorption and fluoride removal in water and to characterize material properties. The experimental results showed that the adsorption capacity of kaolinite decreased with increasing pH. The highest adsorption of fluoride occurred at pH 2, with a capacity of 11.1 mg/g. The fluoride removal efficiency remained high after four regeneration cycles. The fitting results with the Freundlich isotherm model and the external diffusion model showed that the non-homogeneous adsorption of kaolinite fit the adsorption behavior better. Finally, the adsorption mechanism was analyzed by FT-IR and XPS. The binding energies of various adsorption sites and the chemical adsorption properties of atomic states were discussed in relation to DFT calculations. The results showed that Al and H sites were the main binding sites, and the bonding stability for different forms of fluoride varies, with the size of Al-F (-7.498 eV) > H-F (-6.04 eV) > H-HF (-3.439 eV) > Al-HF (-3.283 eV). Furthermore, the density of states and Mulliken charge distribution revealed that the 2p orbital of F was found to be active in the adsorption process and was the main orbital for charge transfer.

5.
Front Med (Lausanne) ; 11: 1349171, 2024.
Article in English | MEDLINE | ID: mdl-38784233

ABSTRACT

Objective: Genetic etiology plays a critical role in fetal ventriculomegaly (VM). However, the studies on chromosomal copy number variants (CNVs) in fetal VM are limited. This study aimed to investigate the chromosomal CNVs in fetuses with mild to moderate VM, and explore its genotype-phenotype correlation. Methods: A total of 242 fetuses with mild to moderate VM detected by prenatal ultrasound were enrolled in our study from October 2018 to October 2022. All cases underwent chromosomal microarray analysis (CMA) and G-banding simultaneously. All VM cases were classified different subgroups according to the maternal age, severity, VM distribution and presence/absence of other ultrasound abnormalities. The pregnancy outcomes and health conditions after birth were followed up. We also performed a pooled analysis regarding likely pathogenic and pathogenic CNVs (LP/P CNVs) for VM. Results: The detection rate of chromosomal abnormalities by karyotyping was 9.1% (22/242), whereas it was 16.5% (40/242) when CMA was conducted (P < 0.05). The total detection rate of chromosomal abnormalities by karyotyping and CMA was 21.1% (51/242). A 12.0% incremental yield of CMA over karyotyping was observed. The detection rate of total genetic variants in fetuses with bilateral VM was significantly higher than in fetuses with unilateral VM (30.0% vs. 16.7%, P = 0.017). No significant differences were discovered between isolated VM and non-isolated VM, or between mild and moderate VM, or between advanced maternal age (AMA) and non-AMA (all P > 0.05). 28 fetuses with VM were terminated and 214 fetuses were delivered: one presented developmental delay and one presented congenital heart disease. The VM cases with both positive CMA and karyotypic results had a higher rate of termination of pregnancy than those with either a positive CMA or karyotypic result, or both negative testing results (P < 0.001). Conclusion: The combination of CMA and karyotyping should be adopted to improve the positive detection rate of chromosomal abnormalities for VM. The total genetic abnormalities detected using both techniques would affect the final pregnancy outcomes. LP/P CNVs at 16p11.2, 17p13, and 22q11.21 were identified as the top three chromosomal hotspots associated with VM, which would enable genetic counselors to provide more precise genetic counseling for VM pregnancies.

6.
Nanomaterials (Basel) ; 14(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607153

ABSTRACT

In recent years, fluoride pollution in water is a problem that has attracted much attention from researchers. The removal of fluoride-containing wastewater by adsorption with metal oxide as an adsorbent is the most common treatment method. Based on this, the effect of the doping ratio of La2O3, Fe2O3, and Al2O3 on the fluoride-removal performance was discussed by constructing a phase diagram. In this study, the adsorption mechanism of nanocrystalline lanthanum oxide terpolymer was investigated by density functional theory calculation and experiment. The optimal pH condition selected in the experiment was three, and the adsorption kinetics of fluoride ions were more consistent with the quasi-second-order kinetic model. The adsorption thermodynamics was more consistent with the Langmuir model. When the La-Fe-Al ternary composite oxides achieved the optimal adsorption efficiency for fluoride ions, the mass synthesis ratio was Al2O3:(Fe2O3:La2O3 = 1:2) = 1:100, resulting in a fluoride ion removal rate of up to 99.78%. Density functional calculations revealed that the La-Fe-Al ternary composite oxides had three important adsorption sites for La, Fe, and Al. Among them, the adsorption capacity for HF was Fe2O3 > La2O3 > Al2O3, and for F- was La2O3 > Al2O3 > Fe2O3. This provided good guidance for designing adsorbents to remove fluoride.

7.
Environ Res ; 252(Pt 3): 118984, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38670211

ABSTRACT

Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.


Subject(s)
Oxidation-Reduction , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Electrons , Anaerobiosis , Ammonium Compounds/chemistry , Water Purification/methods , Quaternary Ammonium Compounds/chemistry
8.
Bioresour Technol ; 398: 130533, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452950

ABSTRACT

Liquid digestate of food waste is an ammonium-, ferric- and sulfate-laden leachate produced during digestate dewatering, where the carbon source is insufficient for nitrogen removal. A two-stage partial nitrification-anammox/denitrification process was established for nitrogen removal of liquid digestate without pre-treatment (>300 d), through which nitrogen (95 %), biodegradable organics (100 %), sulfate (78 %) and iron (100 %) were efficiently removed. Additional ammonium conversion (20 %N) might be coupled with ferric and sulfate reduction, while produced nitrite could be further converted to di-nitrogen gas through anammox (75 %) and denitrification (25 %). Notably, since increasingly contribution of hydroxylamine producing nitrous oxide, and up-regulated expression of electron transfer and cytochrome c protein, the enhanced ammonium oxidation was probably conducted through extracellular polymeric substances-mediated electron transfer between sulfate/ferric-reducers and aerobic ammonium oxidizers. Thus, the established partial nitrification-anammox/denitrification process might be a cost-efficient nitrogen removal technology for liquid digestate, benefitting to domestic waste recycling and carbon neutralization.


Subject(s)
Ammonium Compounds , Refuse Disposal , Nitrification , Denitrification , Food Loss and Waste , Nitrogen , Sulfates , Food , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Iron , Carbon , Bioreactors , Sewage
9.
J Hazard Mater ; 470: 134155, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552391

ABSTRACT

Iron complex regulated electrochemical reaction was triggered for revealing the reaction mechanism, degradation pathway, and applied potential of perfluorooctanoic acid (PFOA). The increased PMS concentrations, electrode spacing, and current density significantly enhanced PFOA elimination, with current density exhibiting a relatively strong interdependency to PFOA complete mineralization. The synergy between PMS and electrochemical reactions greatly accelerated PFOA decomposition by promoting the generation of key reaction sites, such as those for PMS activation and electrochemical processes, under various conditions. Furthermore, density functional theory calculations confirmed that the reciprocal transformation of Fe2+ and Fe3+ complexes was feasible under the electrochemical effect, further promoting the generation of active sites. The developed electrochemical oxidation with PMS reaction (EO/PMS) system can rapidly decompose and mineralize PFOA while maintaining strong tolerance to changing water matrices and organic and inorganic ions. Overall, it holds promise for use in treating and purifying wastewater containing PFOA.

10.
J Environ Manage ; 351: 120005, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183951

ABSTRACT

Accurate estimation of potential wildfire behavior characteristics (PWBC) can improve wildfire danger assessment. However, wildfire behavior has been estimated by most fire spread models with immeasurable uncertainties and difficulties in large-scale applications. In this study, a PWBC estimation model (named PWBC-QR-BiLSTM) was proposed by coupling the Bi-directional Long Short-Term Memory (BiLSTM) and quantile regression (QR) methods. Multi-source data, including fuel, weather, topography, infrastructure, and landscape variables, were input into the PWBC-QR-BiLSTM model to estimate the potential rate of spread (ROS) and fire radiative power (FRP) over western Sichuan of China, and then to estimate the probability density of ROS and FRP. Daily ROS and FRP were extracted from the Global Fire Atlas and the MOD14A1/MYD14A1 product. The optimal PWBC-QR-BiLSTM model was determined using the Non-dominated Sorting Genetic Algorithm Ⅱ (NAGA-Ⅱ). Results showed that the PWBC-QR-BiLSTM performed well in estimating potential ROS and FRP with high accuracy (ROS: R2 > 0.7 and MAPE<30%, FRP: R2 > 0.8 and MAPE<25%). The modal PWBC values extracted from the estimated probability density were closer to the observed values, which can be regarded as a good indicator for wildfire danger assessment. The variable importance analysis also verified that fuel and infrastructure variables played an important role in driving wildfire behavior. This study suggests the potential of utilizing artificial intelligence to estimate PWBC and its probability density to improve the guidance on wildfire management.


Subject(s)
Deep Learning , Fires , Wildfires , Artificial Intelligence , Reactive Oxygen Species , Conservation of Natural Resources/methods , China
11.
J Colloid Interface Sci ; 659: 993-1002, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224631

ABSTRACT

The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi-ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.

12.
Environ Toxicol ; 39(3): 1323-1334, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37955338

ABSTRACT

Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.


Subject(s)
Arsenic , Arsenites , Humans , Mice , Animals , Diet, High-Fat , Arsenites/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Liver , Arsenic/metabolism , Lipid Metabolism
13.
Medicine (Baltimore) ; 102(43): e34852, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904428

ABSTRACT

RATIONALE: Chromosome microdeletions within 7q11.23 can result in Williams-Beuren syndrome which is a rare autosomal dominant disorder. Williams-Beuren syndrome is usually associated with developmental delay, cardiovascular anomalies, mental retardation, and characteristic facial appearance. PATIENT CONCERNS: Two pregnant women underwent amniocentesis for cytogenetic analysis and chromosomal microarray analysis (CMA) because of abnormal ultrasound findings. Case 1 presented subependymal cyst and case 2 presented intrauterine growth restriction, persistent left superior vena cava and pericardial effusion in clinical ultrasound examination. DIAGNOSES: Cytogenetic examination showed that the 2 fetuses presented normal karyotypic results. CMA detected 1.536 Mb (case 1) and 1.409 Mb (case 2) microdeletions in the region of 7q11.23 separately. INTERVENTIONS: Both couples opted for the termination of pregnancies based upon genetic counseling. OUTCOMES: The deleted region in both fetuses overlapped with Williams-Beuren syndrome. To our knowledge, case 1 was the first reported fetus of Williams-Beuren syndrome with subependymal cyst. LESSONS: The genotype-phenotype of Williams-Beuren syndrome is complicated due to the phenotypic diversity. For prenatal cases, clinicians should consider the combination of ultrasonography, traditional cytogenetic, and molecular diagnosis technology when genetic counseling.


Subject(s)
Cysts , Williams Syndrome , Humans , Female , Pregnancy , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Vena Cava, Superior , Prenatal Diagnosis , Genetic Testing
14.
Front Med (Lausanne) ; 10: 1207891, 2023.
Article in English | MEDLINE | ID: mdl-37692779

ABSTRACT

Objective: Chromosomal 1q21.1 deletions and duplications are genomic disorders that are usually diagnosed postnatally. However, the genotype-phenotype correlations of 1q21.1 copy number variants (CNVs) during the prenatal period are still not clear. This study aimed to provide a systematic summary of prenatal phenotypes for such genomic disorders. Methods: In total, 26 prenatal amniotic fluid samples diagnosed with 1q21.1 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed for all cases simultaneously. The pregnancy outcomes and health conditions after birth in all cases were followed up. Meanwhile, prenatal cases with 1q21.1 microdeletions or microduplications in the literature were retrospectively collected. Results: In total, 11 pregnancies (11/8,252, 0.13%) with 1q21.1 microdeletions and 15 (15/8,252, 0.18%) with 1q21.1 microduplications were identified. Among these 1q21.1 CNVs, 4 cases covered the thrombocytopenia-absent radius (TAR) region, 16 cases covered the 1q21.1 recurrent microdeletion/microduplication region, and 6 cases covered all regions mentioned above. The prenatal abnormal ultrasound findings were recorded in four participants with 1q21.1 deletions and seven participants with 1q21.1 duplications. Finally, three cases with 1q21.1 deletions and five with 1q21.1 duplications terminated their pregnancies. Conclusion: In the prenatal setting, 1q21.1 microdeletions were associated with increased nuchal translucency (NT), anomalies of the urinary system, and cardiovascular abnormalities, while 1q21.1 microduplications were correlated with cardiovascular malformations, nasal bone dysplasia, and increased NT. In addition, cerebral ventriculomegaly might be correlated with 1q21.1 microduplications. Considering the variable expressivity and incomplete penetrance of 1q21.1 CNVs, long-term follow-up after birth should be carried out in these cases.

15.
Chemosphere ; 340: 139808, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37591373

ABSTRACT

With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.


Subject(s)
Environmental Pollutants , Fluorides , Humans , Wastewater , Adsorption , Technology
16.
J Int Med Res ; 51(8): 3000605231187948, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37585737

ABSTRACT

OBJECTIVE: This study aimed to compare the effects of two brands of commercial vitrification carriers on pregnancy outcomes in freeze-thaw cycles. METHODS: We included 4871 patients who underwent a "freeze all" strategy using the commercial carriers J.Y. straw and OYASHIPS straw in the Reproductive Center of the First Hospital of Jilin University. The pregnancy outcomes of cleavage-stage embryos and blastocysts were studied separately. Detailed data and the safety of children born from mothers with the two types of carriers were also compared. RESULTS: Patients who used J.Y. straw had similar clinical pregnancy and live birth rates with one and two cleavage-stage embryo transplantation to those who used OYASHIPS straw. In patients who had blastocyst transplantation, the clinical pregnancy rate of one blastocyst transplanted in those who used OYASHIPS straw was significantly higher than that in those who used J.Y. straw (57.85% vs 47.09%). Among children born from mothers who used J.Y. straw, the congenital disability rate was significantly higher than that in those with OYASHIPS straw. CONCLUSION: The OYASHIPS straw carrier is cheap and can achieve clinical pregnancy and live birth outcomes comparable to those of J.Y. straw. Therefore, OYASHIPS straw is a good alternative option.


Subject(s)
Cryopreservation , Pregnancy Outcome , Vitrification , Child , Female , Humans , Pregnancy , Blastocyst , Embryo Transfer , Pregnancy Rate , Retrospective Studies
17.
Sci Rep ; 13(1): 12164, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500704

ABSTRACT

Sertoli cell-only syndrome (SCOS), a severe testicular spermatogenic failure, is characterized by total absence of male germ cells. To better expand the understanding of the potential molecular mechanisms of SCOS, we used microarray datasets from the Gene Expression Omnibus (GEO) and ArrayExpress databases to determine the differentially expressed genes (DEGs). In addition, functional enrichment analysis including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. Protein-protein interaction (PPI) networks, modules, and miRNA-mRNA regulatory networks were constructed and analyzed and the validation of hub genes was performed. A total of 601 shared DEGs were identified, including 416 down-regulated and 185 up-regulated genes. The findings of the enrichment analysis indicated that the shared DEGs were mostly enriched in sexual reproduction, reproductive process, male gamete generation, immune response, and immunity-related pathways. In addition, six hub genes (CCNA2, CCNB2, TOP2A, CDC20, BUB1, and BUB1B) were selected from the PPI network by using the cytoHubba and MCODE plug-ins. The expression levels of the hub genes were significantly decreased in patients with SCOS compared to that in normal spermatogenesis controls as indicated by the microarray data, single-cell transcriptomic data, and clinical sample levels. Furthermore, the potential miRNAs were predicted via the miRNA-mRNA network construction. These hub genes and miRNAs can be used as potential biomarkers that may be related to SCOS. However, it has not been proven that the differential expression of these biomarkers is the molecular pathogenesis mechanisms of SCOS. Our findings suggest that these biomarkers can be serve as clinical tool for diagnosis targets and may have some impact on the spermatogenesis of SCOS from a testicular germ cell perspective.


Subject(s)
MicroRNAs , Sertoli Cell-Only Syndrome , Humans , Male , Sertoli Cell-Only Syndrome/genetics , Gene Regulatory Networks , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/genetics , Computational Biology , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic
18.
BMC Pregnancy Childbirth ; 23(1): 324, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149590

ABSTRACT

BACKGROUND: The aim of this study was to develop a nomogram for predicting the risk of preterm birth in women undergoing in vitro fertilization (IVF) cycles. METHODS: A retrospective study of 4266 live birth cycles collected from January 2016 to October 2021 at the Center for Reproductive Medicine, First Hospital of Jilin University was performed. The sample size was sufficient based on the minimal ten events per variable (EPV) rule. The primary outcome of this study was preterm birth. The cycles were divided into the preterm birth group (n = 827) and the full-term delivery group (n = 3439). A nomogram was established based on the multivariate logistic regression analysis results. The area under the curve (AUC) was calculated to assess the prediction accuracy of the nomogram model. The calibration curve was used to measure the calibration of the nomogram. RESULTS: Multivariate logistic regression analyses showed that female obesity or overweight (OR = 1.366, 95% CI: 1.111-1.679; OR = 1.537, 95% CI: 1.030-2.292), antral follicle count (AFC) of more than 24 (OR = 1.378, 95% CI: 1.035-1.836), multiple pregnancies (OR = 6.748, 95% CI: 5.559-8.190), gestational hypertension (OR = 9.662, 95% CI: 6.632-14.078) and gestational diabetes (OR = 4.650, 95% CI: 2.289-9.445) were the independent risk factors for preterm birth in IVF patients. The area under curve (AUC) under the receiver operating characteristic (ROC) curve in the prediction model was 0.781(95%CI: 0.763-0.799). The calibration curve of the nomogram showed that the prediction model had a good calibration. CONCLUSIONS: We used five risk factors to conduct a nomogram to predict preterm birth rates for patients undergoing IVF cycles. This nomogram can provide a visual assessment of the risk of preterm birth for clinical consultation.


Subject(s)
Premature Birth , Pregnancy , Humans , Female , Infant, Newborn , Premature Birth/epidemiology , Premature Birth/etiology , Retrospective Studies , Nomograms , Fertilization in Vitro/methods , Risk Factors
19.
Adv Sci (Weinh) ; 10(16): e2301312, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37069783

ABSTRACT

The development of low-cost RE-Fe-B sintered magnets with large La/Ce content is of great significance for the balanced utilization of rare earth (RE) resources, but it is limited by reduced magnetic properties. In this work, the coercivity (Hcj ), remanence (Br ), maximum energy product [(BH)max ], and temperature stability are simultaneously enhanced for magnets with LaCe accounting for 40 wt% of the total RE. The synergistic regulation of the REFe2 phase, Ce-valence, and grain boundaries (GBs) in RE-Fe-B sintered magnets is realized for the first time by introducing appropriate La elements. The La elements inhibit the generation of the REFe2 phase and tend to stay in the triple junctions, promoting the segregation of the RE/Cu/Ga elements and contributing to the formation of Ce/Nd/Cu/Ga-rich continuous thicker lamellar GBs, and as a result, weakening the detrimental effect on HA caused by La element substitution and enhancing Hcj . In addition, partial La atoms entering the RE2 Fe14 B phase are beneficial for improving the Br and temperature stability of the magnets and promoting the Ce3+ ion ratio, which also provides additional benefit for Br . The findings provide an effective and feasible way to co-enhance the remanence and coercivity of RE-Fe-B sintered magnets with high Ce content.

20.
Bioresour Technol ; 373: 128712, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36758645

ABSTRACT

A two-stage anaerobic digestion process utilizing food waste was investigated in this study, without any additive and co-digestion. Solid content, temperature and pH value were key controlling factors for hydrolysis, which results the optimized food waste hydrolysate with COD/VSfood waste of 2.67. Efficient biogas production was maintained in long-term operation (>150 d) without any additive, and methane production yields up to 699.7 mL·gVS-1·d-1 was achieved under organic loading rate (OLR) of 31.0 gVS·d-1. Methane production can be recovered (70.4 %) after temperature shock within 30 days. This study confirmed the possibility to establish two-stage food waste anaerobic digestion system under high organic load. pH, OLR, and temperature are key factors to maintain stable biogas production, while pH control was performed as a in situ sulfide control technology (75.8 % sulfide reduction). This study provides practical strategies for food waste utilization and decreasing carbon footprint.


Subject(s)
Microbiota , Refuse Disposal , Anaerobiosis , Refuse Disposal/methods , Biofuels , Food , Methane , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL