Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Abdom Radiol (NY) ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39333412

ABSTRACT

OBJECTIVES: This study aimed to identify the incidence of adrenal hemorrhage (AH) after OLT and to summarize the ultrasound (US) and contrast-enhanced ultrasound (CEUS) characteristics. METHODS: Patients with adrenal lesions after OLT at our hospital were retrospectively reviewed between January 2010 and November 2023. The reference diagnosis was defined on the basis of surgical data, computed tomography scans, and magnetic resonance imaging with at least 12 months of follow-up. The incidence of AH and the US and CEUS characteristics after OLT were analyzed and compared with those of adrenal metastases. RESULTS: A total of 23 patients (1.2%) with AH and 7 patients (0.35%) with suprarenal metastases were assessed. Compared with metastases, hematomas had more inhomogeneous echotextures (57% vs. 0.00%, P = 0.010), hypoechoic or mixed-echoic patterns (96% vs. 71%, P = 0.022), and anechoic areas (52% vs. 0.00%, P = 0.024), and their echotextures varied more over time (65% vs. 0.14%, P = 0.031). CEUS was performed on 12 patients with AH and 2 patients with metastases. A "jet-like" contrast superflux was observed in one actively bleeding hematoma, whereas no enhancement was observed in any static hematoma (100%). However, adrenal metastases had a contrast-enhanced appearance in the early arterial phase, followed by fast washout in the late phase (100%), and the difference was statistically significant (P < 0.001). CONCLUSION: The sonographic characteristics of AH after OLT vary over time. CEUS is recommended when adrenal lesions are detected, as CEUS can differentiate AH from metastases.

2.
Adv Mater ; : e2408723, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258357

ABSTRACT

Surface-driven capacitive storage enhances rate performance and cyclability, thereby improving the efficacy of high-power electrode materials and fast-charging batteries. Conventional defect engineering, widely-employed capacitive storage optimization strategy, primarily focuses on the influence of defects themselves on capacitive behaviors. However, the role of local environment surrounding defects, which significantly affects surface properties, remains largely unexplored for lack of suitable material platform and has long been neglected. As proof-of-concept, typical Ti3C2Tx MXenes are chosen as model materials owing to metallic conductivity and tunable surface properties, satisfying the requirements for capacitive-type electrodes. Using density functional theory (DFT) calculations, the potential of MXenes with modulated local atomic environment is anticipated and introducing new carbon sites found near pores can activate electrochemically inert surface, attaining record theoretical potassium storage capacities of MXenes (291 mAh g-1). This supposition is realized through atomic tailoring via chemical scissor within sublayers, exposing new sp3-hybridized carbon active sites. The resulting MXenes demonstrate unprecedented rate performance and cycling stability. Notably, MXenes with higher carbon exposure exhibit a record-breaking capacity over 200 mAh g-1 and sustain a capacity retention higher than 80% after 20 months. These findings underscore the effectiveness of regulating defects' neighboring environment and illuminate future high-performance electrode design.

3.
Acad Radiol ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39227218

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to evaluate whether Doppler ultrasonography (DUS) and contrast-enhanced ultrasonography (CEUS) within 3 days postoperative can identify 1-month graft failure after split liver transplantation (SLT). MATERIALS AND METHODS: A total of 58 consecutive patients who underwent SLT between February 2022 and September 2023 were included. The DUS and CEUS images and parameters within 3 days postoperatively were analyzed and recorded. The DUS parameters included peak systolic velocity (PSV), resistive index, and systolic acceleration time for the hepatic artery and PSV for the portal vein and hepatic vein. The CEUS qualitative analysis variables included the liver parenchyma enhancement pattern and the posterior enhancement attenuation. Logistic regression and Cox proportional hazard regression were used to evaluate the relationship between DUS/CEUS findings and 1-month graft failure. RESULTS: Seven of the 58 liver grafts failed within 1 month. Poor CEUS enhancement (pattern Ⅱ/Ⅲ) was observed in five of seven patients (71.4%) of graft failure, whereas good contrast enhancement (pattern Ⅰ) was found in 47 of the 51 patients (92.1%) in the successful group on postoperative day 3. Multivariate logistic regression analysis revealed that 1-month graft failure was independently predicted by operative time (odds ratio [OR] = 3.79, 95% confidence interval [CI]: 1.27-11.29, p = .017) and CEUS enhancement pattern on postoperative day 3 (OR = 90.88, 95% CI: 2.77-2979.56, p = .011). Cox proportional hazard regression showed that operative time (hazard ratio [HR] = 1.6, 95% CI: 1.15-2.22, p = .005) and CEUS enhancement pattern on postoperative day 3 (HR = 11.947, 95% CI: 2.04-69.98, p = .006) were independent predictors for graft failure. CONCLUSION: Poor CEUS enhancement (pattern Ⅱ/Ⅲ) was associated with 1-month graft failure in SLT recipients. CEUS may serve as a noninvasive, valuable prognostic tool to predict clinical outcomes early after SLT.

4.
Sci Total Environ ; 954: 176376, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304166

ABSTRACT

Iron (oxyhydr)oxides are ubiquitous in terrestrial environments and play a crucial role in controling the fate of arsenic in sediments and groundwater. Although there is evidence that different iron (oxyhydr)oxides have different affinities towards As(III) and As(V), it is still unclear why As(V) adsorption on some iron (oxyhydr)oxides is larger than As(III) adsorption, while it is opposite for other ones. In this study, six typical iron (oxyhydr)oxides are selected to evaluate their adsorption capacities for As(III) and As(V). The characteristics of these iron minerals such as morphology, arsenic adsorption species, and pore size distribution are carefully examined using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), positron annihilation lifetime (PAL) spectroscopy, and X-ray absorption spectroscopy (XAS). We confirm a seesaw effect occurred in different iron minerals for As(III) and As(V) immobilization, i.e., at pH 6.0, adsorption of As(V) on hematite (0.73 µmol m-2) and magnetite (0.33 µmol m-2) is higher than for As(III) (0.61 µmol m-2 and 0.27 µmol m-2, respectively), for goethite and lepidocrocite it is almost equal, while As(III) sorption on ferrihydrite (5.77 µmol m-2) and schwertmannite (28.41 µmol m-2) showed higher sorption than As(V) (1.53 µmol m-2 and 12.99 µmol m-2, respectively). PAL analysis demonstrates that ferrihydrite and schwertmannite have a large concentration of vacancy cluster-like micropores, significantly more than goethite and lepidocrocite, followed by hematite and magnetite. The difference of adsorption of As(III) and As(V) to different iron (oxyhydr)oxides is due to differences in the abundance of vacancy cluster-like micropore sites, which are conducive for smaller size As(III) immobilization but not for larger size of As(V). The findings of this study provide novel insights into a seesaw effect for As(III) and As(V) immobilization on naturally occurring iron mineral.

5.
Article in English | MEDLINE | ID: mdl-39222168

ABSTRACT

A recombinant esterase, BaCEm, derived from Bacillus aryabhattai and heterologously expressed in Escherichia coli, was successfully immobilized on polyethyleneimine-impregnated mesoporous silica SBA-15. This immobilization utilized glutaraldehyde as a crosslinker. Optimal conditions were established with a PEI/SBA-15 ratio of 25% (w/w), a pH of 7.5, and a glutaraldehyde concentration of 0.5% (w/w), resulting in a loading capacity of 76.4 mg/g, a recovery activity of 43.5%, and a specific activity of 7917 U/g for BaCEm. The immobilized BaCEm demonstrated high enantioselectivity, with an "E" value of 203.92, in the resolution assay of (R,S)-ethyl indoline-2-carboxylate. Notably, the immobilized enzyme, compared to its free counterpart, exhibited enhanced thermostability, maintaining 95.4% of its activity after 3 h at 30 °C. It also showed significant tolerance to organic solvents, retaining 48.4% and 28.7% residual activity in 10% v/v acetonitrile and acetone, respectively. Moreover, its storage stability was confirmed, with 68.5% residual activity preserved after 30 days at 4 °C. Remarkably, the immobilized BaCEm retained 58.1% of its activity after 10 reuse cycles, underscoring the potential of polyethyleneimine-impregnated mesoporous silica SBA-15 as an effective support for enzyme immobilization, promising for industrial applications.

6.
Front Biosci (Landmark Ed) ; 29(7): 247, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39082331

ABSTRACT

BACKGROUND: Retinal pigment epithelial (RPE) cells have a pivotal function in preserving the equilibrium of the retina and moderating the immunological interaction between the choroid and the retina. This study primarily focuses on delineating the protective effect offered by Kaempferol (Kae) against RPE cell damage. METHODS: Bioinformatics analysis was performed on the GSE30719 dataset to identify hub genes associated with RPE. Subsequently, we analyzed the impact of Kae on RPE apoptosis, cell viability, and inflammatory response through cell experiments, and explored the interaction between hub genes and Kae. RESULTS: Based on the GSE30719 dataset, nine hub genes (ISG15, IFIT1, IFIT3, STAT1, OASL, RSAD2, IRF7, MX2, and MX1) were identified, all of which were highly expressed in the GSE30719 case group. Kae could boost the proliferative activity of RPE cells caused by lipopolysaccharide (LPS), as well as reduce apoptosis and the generation of inflammatory factors (tumor necrosis factor receptor (TNFR), interleukin-1beta (IL-1ß)) and cytokines (IL-1, IL-6, IL-12). STAT1 was shown to inhibit cell proliferation, promote apoptosis, and secrete IL-1/IL-6/IL-12 in LPS-induced RPE cells. Moreover, IRF7 was found to interact with STAT1 in LPS-induced RPE cells, and STAT1 could maintain IRF7 levels through deubiquitination. In addition, we also found that the protective effect of Kae on LPS-induced RPE cell injury was mediated through STAT1/IRF7 axis. CONCLUSION: This study provided evidence that Kae protects RPE cells via regulating the STAT1/IRF7 signaling pathways, indicating its potential therapeutic relevance in the diagnosis and management of retinal disorders linked with RPE cell damage.


Subject(s)
Apoptosis , Interferon Regulatory Factor-7 , Kaempferols , Retinal Pigment Epithelium , STAT1 Transcription Factor , Ubiquitination , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , STAT1 Transcription Factor/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Ubiquitination/drug effects , Apoptosis/drug effects , Kaempferols/pharmacology , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Survival/drug effects , Lipopolysaccharides , Proteolysis/drug effects , Signal Transduction/drug effects , Cytokines/metabolism , Cytokines/genetics
7.
Bioorg Med Chem Lett ; 110: 129889, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39004318

ABSTRACT

Studies have shown that disrupting the formation of the ligand-RET-GFRα complex could be an effective way of treating pain and itch. Compared to traditional high-throughput screens, DNA encoded libraries (DELs) have distinguished themselves as a powerful technology for hit identification in recent years. The present work demonstrates the use of DEL technology identifying compound 16 as the first GFRa2/GFRa3 small molecule inhibitor (0.1/0.2 µM respectively) selective over RET. This molecule represents an opportunity to advance the development of small-molecule inhibitors targeting the GFRα-RET interface for the treatment of pain and itch.


Subject(s)
DNA , Glial Cell Line-Derived Neurotrophic Factor Receptors , Small Molecule Libraries , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Humans , DNA/chemistry , DNA/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/antagonists & inhibitors , Drug Discovery , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug
8.
Nat Commun ; 15(1): 4869, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849328

ABSTRACT

The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120 °C within 30 s. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.

9.
Aging Ment Health ; : 1-8, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835194

ABSTRACT

OBJECTIVES: Although there have been studies on the association of handgrip strength or walking speed alone with cognitive abilities, few studies have determined the combined associations of handgrip strength and walking speed with cognitive function. Therefore we aimed to explore the independent and combined associations of handgrip strength and walking speed with cognitive function in Chinese older adults using a nationally representative sample. METHOD: This cross-sectional study included 4,577 adults aged 60 and older. Handgrip strength was measured using a dynamometer and walking speed was assessed using a 2.5-meter walking test. Both handgrip strength and walking speed were organized into low, normal, and high tertiles according to the sample distribution. Cognitive function was measured using the Telephone Interview for Cognitive Status. RESULTS: Handgrip strength and walking speed were significantly associated with cognitive function. Participants with low handgrip strength or low walking speed separately had a higher rate of lower cognitive function (adjusted odds ratio (OR): 1.22 (95% CI: 1.04 - 1.44) for low handgrip strength; 1.54 (95% CI: 1.31 - 1.81) for low walking speed). Those with both low handgrip strength and low walking speed had an additively higher rate of lower cognitive function (adjusted OR: 1.72 (95% CI: 1.32 - 2.24)). CONCLUSION: Having low handgrip strength or low walking speed is associated with a greater likelihood of lower cognitive function and vice versa. The concurrence of having low handgrip strength and low walking speed has an additive effect on cognitive function in older adults.

10.
Angew Chem Int Ed Engl ; 63(38): e202404816, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38788189

ABSTRACT

Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnOx) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 (MXene) forms an amorphous/crystalline (A/C) interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1 mg cm-2), ultra-thin (~200 nm), and ultra-robust (modulus=4.9 GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3 mAh g-1 and an average Coulombic efficiency of 99.9 % after 400 cycles at 0.5 C.

11.
Article in English | MEDLINE | ID: mdl-38763743

ABSTRACT

BACKGROUND: Identifying treatment targets for sarcopenia is a public health concern. This study aimed to examine the association of nocturnal sleep duration and midday napping with the presence of sarcopenia in middle-aged and older adults, utilizing data from the China Health and Retirement Longitudinal Study in 2011 and 2015. METHODS: A sum of 7,926 individuals (≥40 years) took part in this study. Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia. A self-reported questionnaire was used to collect data on nocturnal sleep duration and midday napping. Nocturnal sleep duration was categorized into three groups: short sleepers (<6 h), normal sleepers (6-8 h), and long sleepers (>8 h). Midday napping was coded as a dichotomous outcome (yes/no). RESULTS: The incidence of sarcopenia was 5.3% during the 4-year follow-up. Short sleep duration (<6 h) was substantially linked to an increased incidence of sarcopenia (OR: 1.50, 95% CI: 1.21-1.87) as compared to nocturnal sleep length (6-8 h). Adults with midday napping had a lower risk of developing sarcopenia than non-nappers (OR: 0.78, 95% CI: 0.63-0.95). We further found that short sleepers with midday napping did not have a significantly higher risk of subsequent diagnosis of sarcopenia compared to normal sleepers without midday napping. CONCLUSION: These findings imply that short sleep duration in middle-aged and older persons is related to an increased incidence of sarcopenia. However, the adverse effect of short sleep duration on sarcopenia can be compensated by midday napping.


Subject(s)
Sarcopenia , Sleep , Humans , Longitudinal Studies , Middle Aged , Sarcopenia/epidemiology , Male , Incidence , Female , Sleep/physiology , Aged , China/epidemiology , Time Factors , Adult , Aged, 80 and over , Risk Factors , Sleep Duration
12.
BMC Plant Biol ; 24(1): 454, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789943

ABSTRACT

Pleiotropy is frequently detected in agronomic traits of wheat (Triticum aestivum). A locus on chromosome 4B, QTn/Ptn/Sl/Sns/Al/Tgw/Gl/Gw.caas-4B, proved to show pleiotropic effects on tiller, spike, and grain traits using a recombinant inbred line (RIL) population of Qingxinmai × 041133. The allele from Qingxinmai increased tiller numbers, and the allele from line 041133 produced better performances of spike traits and grain traits. Another 52 QTL for the eight traits investigated were detected on 18 chromosomes, except for chromosomes 5D, 6D, and 7B. Several genes in the genomic interval of the locus on chromosome 4B were differentially expressed in crown and inflorescence samples between Qingxinmai and line 041133. The development of the KASP marker specific for the locus on chromosome 4B is useful for molecular marker-assisted selection in wheat breeding.


Subject(s)
Alleles , Chromosomes, Plant , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Phenotype , Genetic Pleiotropy , Plant Breeding
13.
ACS Nano ; 18(19): 12489-12502, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38698739

ABSTRACT

Using superhydrophobic surfaces (SHSs) with the water-repellent Cassie-Baxter (CB) state is widely acknowledged as an effective approach for anti-icing performances. Nonetheless, the CB state is susceptible to diverse physical phenomena (e.g., vapor condensation, gas contraction, etc.) at low temperatures, resulting in the transition to the sticky Wenzel state and the loss of anti-icing capabilities. SHSs with various micronanostructures have been empirically examined for enhancing the CB stability; however, the energy barrier transits from the metastable CB state to the stable Wenzel state and thus the CB stability enhancement is currently not enough to guarantee a well and appliable anti-icing performance at low temperatures. Here, we proposed a dual-energy-barrier design strategy on superhydrophobic micronanostructures. Rather than the typical single energy barrier of the conventional CB-to-Wenzel transition, we introduced two CB states (i.e., CB I and CB II), where the state transition needed to go through CB I and CB II then to Wenzel state, thus significantly improving the entire CB stability. We applied ultrafast laser to fabricate this dual-energy-barrier micronanostructures, established a theoretical framework, and performed a series of experiments. The anti-icing performances were exhibited with long delay icing times (over 27,000 s) and low ice-adhesion strengths (0.9 kPa). The kinetic mechanism underpinning the enhanced CB anti-icing stability was elucidated and attributed to the preferential liquid pinning in the shallow closed structures, enabling the higher CB-Wenzel transition energy barrier to sustain the CB state. Comprehensive durability tests further corroborated the potentials of the designed dual-energy-barrier structures for anti-icing applications.

14.
Radiat Oncol ; 19(1): 64, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807176

ABSTRACT

PURPOSE: This study aims to investigate the effects of chest wall bolus in intensity-modulated radiotherapy (IMRT) technology on clinical outcomes for post-mastectomy breast cancer patients. MATERIALS AND METHODS: This retrospective study included patients with invasive carcinoma ((y)pT0-4, (y)pN0-3) who received photon IMRT after mastectomy at the Affiliated Hospital of Qingdao University from 2014 to 2019. The patients were divided into two groups based on whether they received daily bolus application or not, and the baseline characteristics were matched using propensity score matching (PSM). Cumulative incidence (CI) of local recurrence (LR), locoregional recurrence (LRR), overall survival (OS) and disease-free survival (DFS) were evaluated with a log-rank test. Acute skin toxicity and late radiation pneumonia was analyzed using chi-square test. RESULTS: A total of 529 patients were included in this study, among whom 254 (48%) patients received bolus application. The median follow-up time was 60 months. After matching, 175 well-paired patients were selected. The adjusted 5-year outcomes (95% confidence interval) in patients treated with and without bolus were, respectively: CI of LR 2.42% (0.04-4.74) versus 2.38% (0.05-4.65), CI of LRR 2.42% (0.04-4.74) versus 3.59% (0.73-6.37), DFS 88.12% (83.35-93.18) versus 84.69% (79.42-90.30), OS 94.21% (90.79-97.76) versus 95.86% (92.91-98.91). No correlation between bolus application and skin toxicity (P = 0.555) and late pneumonia (P = 0.333) was observed. CONCLUSIONS: The study revealed a low recurrence rate using IMRT technology. The daily used 5 mm chest wall bolus was not associated with improved clinical outcomes.


Subject(s)
Breast Neoplasms , Mastectomy , Radiotherapy, Intensity-Modulated , Humans , Female , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Retrospective Studies , Middle Aged , China/epidemiology , Adult , Neoplasm Recurrence, Local/pathology , Aged
15.
Front Bioeng Biotechnol ; 12: 1363780, 2024.
Article in English | MEDLINE | ID: mdl-38756412

ABSTRACT

Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.

16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 480-486, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38632070

ABSTRACT

Objective: To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods: A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T 10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T 10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 µg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results: All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group ( P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group ( P<0.05); the bFGF group showed an increase compared to model group ( P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant ( P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1ß, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group ( P<0.05). The above indexes in bFGF group significantly improved when compared with model group ( P<0.05). Conclusion: bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.


Subject(s)
Fibroblast Growth Factor 2 , Spinal Cord Injuries , Rats , Male , Animals , Rats, Sprague-Dawley , Fibroblast Growth Factor 2/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology , STAT3 Transcription Factor/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Spinal Cord Injuries/therapy , Spinal Cord/metabolism , Signal Transduction
17.
Article in English | MEDLINE | ID: mdl-38603541

ABSTRACT

The urgent need for CO2 capture and hydrogen energy has attracted great attention owing to greenhouse gas emissions and global warming problems. Efficient CO2 capture and H2 purification with membrane technology will reduce greenhouse gas emissions and help reach a carbon-neutral society. Here, 4-sulfocalix[4]arene (SC), which has an intrinsic cavity, was embedded into the Matrimid membrane as a molecular gatekeeper for CO2 capture and H2 purification. The interactions between SC and the Matrimid polymer chains immobilize SC molecules into the interchain gaps of the Matrimid membrane, and the strong hydrogen and ionic bondings were able to form homogeneous mixed-matrix membranes. The incorporation of the SC molecular gatekeeper with exceptional molecular-sieving properties improved the gas separation performance of the mixed-matrix membranes. Compared with that of the Matrimid membrane, the CO2 permeability of the Matrimid-SC-3% membrane increased from 16.75 to 119.78 Barrer, the CO2/N2 selectivity increased from 29.39 to 106.95, and the CO2/CH4 selectivity increased from 29.91 to 140.92. Furthermore, when the permeability of H2 was increased to 172.20 Barrer, the H2/N2 and H2/CH4 selectivities reached approximately 153.75 and 202.59, respectively, which are far superior to those of most existing Matrimid-based materials. The mixed-matrix membranes also exhibited excellent long-term operation stability, with separation performance for several important gas pairs still overtaking the Robeson upper limit after aging for 400 days.

18.
Sci Rep ; 14(1): 9924, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688921

ABSTRACT

The High Average Utility Itemset Mining (HAUIM) technique, a variation of High Utility Itemset Mining (HUIM), uses the average utility of the itemsets. Historically, most HAUIM algorithms were designed for static databases. However, practical applications like market basket analysis and business decision-making necessitate regular updates of the database with new transactions. As a result, researchers have developed incremental HAUIM (iHAUIM) algorithms to identify HAUIs in a dynamically updated database. Contrary to conventional methods that begin from scratch, the iHAUIM algorithm facilitates incremental changes and outputs, thereby reducing the cost of discovery. This paper provides a comprehensive review of the state-of-the-art iHAUIM algorithms, analyzing their unique characteristics and advantages. First, we explain the concept of iHAUIM, providing formulas and real-world examples for a more in-depth understanding. Subsequently, we categorize and discuss the key technologies used by varying types of iHAUIM algorithms, encompassing Apriori-based, Tree-based, and Utility-list-based techniques. Moreover, we conduct a critical analysis of each mining method's advantages and disadvantages. In conclusion, we explore potential future directions, research opportunities, and various extensions of the iHAUIM algorithm.

19.
BMC Geriatr ; 24(1): 258, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493082

ABSTRACT

BACKGROUND: Physical activity (PA) plays an important role in the process of several chronic diseases. It may be also associated with the incidence of sarcopenia. This study aimed to determine the association of PA from different components including frequency, duration, intensity, and volume with the incidence of sarcopenia in middle-aged and older adults. METHODS: This study used data from the China Health and Retirement Longitudinal Study in 2011 and 2015. A total of 3,760 individuals aged ≥ 40 years were involved in this study. Sarcopenia was diagnosed using muscle mass, strength and physical performance according to the Asian Working Group for Sarcopenia. PA information including frequency, duration, intensity, and volume was obtained by a self-reported questionnaire. Logistic regression analysis was employed to examine the association between PA and the incidence of sarcopenia at 4-year follow-up. RESULTS: The incidence of sarcopenia was 5.9% during the 4-year follow-up. Compared to sedentary individuals, those taking 1-2 days or more per week, or a minimum of 10 min each time on vigorous-intensity PA (VPA) had a lower incidence of sarcopenia. Adults spending 3 days or more each week, a minimum of 30 min each time, or 150 min or more per week on moderate-intensity PA (MPA) had a lower presence of sarcopenia than sedentary adults. Adults taking 3 days or more per week, at least 30 min each time, or 150 min or more each week on light-intensity PA (LPA) tended to have a lower incidence of sarcopenia than sedentary individuals. Sensitivity analyses confirmed the robustness of the findings after removing persons with hypertension, dyslipidemia, or diabetes. CONCLUSIONS: These findings suggest that the frequency, duration, and volume of VPA or MPA are negatively associated with the presence of sarcopenia. Participation in LPA tends to have a lower incidence of sarcopenia in middle-aged and older adults.


Subject(s)
Sarcopenia , Humans , Middle Aged , Aged , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Longitudinal Studies , Incidence , Exercise/physiology , China/epidemiology
20.
Aging (Albany NY) ; 16(6): 5027-5037, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38517365

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.


Subject(s)
Hypertension, Pulmonary , Peptide Hormones , Pulmonary Arterial Hypertension , Rats , Mice , Animals , Pulmonary Arterial Hypertension/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Sirtuin 1/metabolism , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension , Oxidative Stress , Inflammation , Hypoxia , Superoxide Dismutase/metabolism , Body Weight
SELECTION OF CITATIONS
SEARCH DETAIL