Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Food Microbiol ; 124: 104615, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244367

ABSTRACT

Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.


Subject(s)
Bacteria , Fungi , Hordeum , Microbiota , Plant Diseases , Seeds , Hordeum/microbiology , Seeds/microbiology , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungi/isolation & purification , Fungi/classification , Fungi/genetics , China , Quarantine
2.
PLoS One ; 19(8): e0308636, 2024.
Article in English | MEDLINE | ID: mdl-39116168

ABSTRACT

Aiming at the characteristics that the signal noise ratio (SNR) gradually decreases from the near to far range of the swath, an adaptive phase filtering algorithm based on Goldstein filtering and combined with multiple quality-guided graphs was proposed. Firstly, the components used to determine the filtering parameters were obtained through residue density, pseudo-coherence coefficient and pseudo-SNR, the three quality-guided graphs. Then, the filter parameters were calculated by weighting the three components. Finally, the size of filtering window was determined according to the account of residues, and the interferometric phase noise was removed in frequency domain. Simulated data, TSX/TDX data and airborne interferometric imaging radar altimeter data were used to verify the performance of the new algorithm. Compared with the results of Goldstein filtering and its improved algorithms, the results showed that the proposed algorithm can effectively filter out phase noise while maintaining the edge characteristics of interferometric fringe. The section of filtering result can well match with the section of simulated pure interfeometric phase. Moreover, the algorithm proposed in this paper can effectively remove the noise in the interferogram of TSX/TDX sea ice data, and the residues' filtering rate was above 86%, which can effectively remove the phase residues of the sea ice surface while maintaining the characteristics of the sea ice edge. Experimental results showed that the new algorithm provides an effective phase noise filtering method for imaging radar altimeter data processing.


Subject(s)
Algorithms , Interferometry , Radar , Signal-To-Noise Ratio , Interferometry/methods
3.
Article in English | MEDLINE | ID: mdl-39110330

ABSTRACT

Bacillus velezensis can produce various secondary metabolites, such as the antibacterial compound iturin A and the coagulation-promoting menaquinone-7 (MK-7). To enhance the economic feasibility of the fermentation process, a co-production strategy, involving the simultaneous production of MK-7 and iturin A by Bacillus velezensis ND, was investigated in this study. Firstly, the effects of cultivation temperature and initial pH on the synthesis of MK-7 and iturin A were investigated. Considering the co-production of iturin A and MK-7, the optimal temperature and pH were determined as 32 °C and 7, respectively. Subsequently, important nutrients for the co-production process were investigated. It was observed that glycerol, soybean meal, yeast extract, and L-glutamate had a significant effect on the co-produce process. An optimal medium composed of glycerol (72.19 mL L-1), L-glutamate (1.4 g L-1), yeast extract (16.88 g L-1), and soybean meal (130.95 g L-1) was obtained by response surface methodology (RSM). This co-produce process was further scaled up in a biofilm reactor, and the maximum concentration of MK-7 and iturin A reached 46.88 mg L-1 and 5.58 g L-1, respectively. Finally, we established an effective method for separately extracting the two metabolites from the fermentation broth. The superiority of this co-production fermentation strategy demonstrates its significant potential for industrial production.

4.
Int J Biol Macromol ; 278(Pt 1): 134675, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134204

ABSTRACT

A high performance poly(vinyl alcohol)/straw (PVA/SP) composite film for package was fabricated in this study by using thermal processing technology of PVA established in our research group and biaxial stretching technology. The introduction of SP disrupted the original hydrogen bonds in modified PVA by forming new hydrogen bonds with the hydroxyl groups of each component in modified system, thus promoting the stable melt casting of PVA/SP composites and also endowing the obtained PVA/SP precursor sheets with good drawability. Upon biaxial stretching, SP reinforced the crystalline structure and orientation of PVA through their hydrogen bonds with PVA, improving the mechanical strength, crystallinity and thermal stability of PVA/SP films. The film with 3.0 × 3.0 stretching ratios demonstrated the exceptional tensile strength (62.2 MPa), tear strength (119.7 kN/m), low heat shrinkage (5.2 %), and oxygen permeability coefficient (1.38 × 10-16 cm3·cm/cm2·s·Pa), which surpassed most conventional plastic films used in food packaging field. This research not only pioneered an environmentally friendly packaging solution, but also offered a novel strategy for solid-state high-value, large-scale and economical utilization of waste crop straw, greatly avoiding the adverse effects of its burning on the environment.

5.
Surg Endosc ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39214880

ABSTRACT

BACKGROUND: Gastroesophageal reflux disease is a prevalent condition with significant clinical variability, complicating its evaluation and treatment. The gastroesophageal flap valve is a fundamental evaluation method, but have shown limitations in specificity and reliance on subjective endoscopists' experience. Recent insights suggest that gastroesophageal junction laxity may offer an objective and quantifiable measurement for the presence of gastroesophageal reflux disease. METHODS: This retrospective study analyzed data from 401 patients who underwent comprehensive evaluations, including a symptom questionnaire, endoscopy, pH-impedance monitoring, high-resolution manometry, and treatment directions, between January 1, 2022 and October 31, 2023. Gastroesophageal junction laxity was assessed using a modified approach based on endoscopic image analysis, with the diameter of endoscope as reference to estimate the long diameter of the laxity ring. The independent association of gastroesophageal junction laxity with pathologic acid exposure, esophagitis, and hiatal hernia were assessed by adjusting with age and sex. RESULTS: The mean age was 44.5 ± 5.5 years old, and 49.9% (200/401) were male. The most common symptoms (≥ 1 point) were acid regurgitation (333/401, 83.0%), heartburn (315/401, 78.6%), belching (278/401, 69.3%), bloating (241/401, 60.1%), and globus sensation (241/401, 60.1%). The gastroesophageal junction laxity was significantly associated with pathologic acid exposure, esophagitis, hiatal hernia, and lower esophageal sphincter resting pressure. Notably, with the increase in gastroesophageal junction laxity, the rates of pathologic acid exposure, esophagitis, and hiatal hernia increased gradually, the lower esophageal sphincter resting pressure decreased gradually. The gastroesophageal junction laxity was independent associated with pathologic acid exposure (OR = 2.33, 95%CI 1.77-3.07, p < 0.001), esophagitis (OR = 2.10, 95%CI 1.62-2.73, p < 0.001), and hiatal hernia (high-resolution manometry: OR = 3.39, 95%CI: 2.46-4.67, p < 0.001) (endoscopy: OR = 21.65, 95%CI 11.70-40.06, p < 0.001). CONCLUSION: The gastroesophageal junction laxity was significantly associated with the indicators of pathophysiology in gastroesophageal reflux disease.

6.
Front Endocrinol (Lausanne) ; 15: 1420049, 2024.
Article in English | MEDLINE | ID: mdl-39211448

ABSTRACT

Osteoarthritis (OA) is a prevalent cause of joint algesia, loss of function, and disability in adults, with cartilage injury being its core pathological manifestation. Since cartilage damage is non-renewable, the treatment outcome in the middle and late stages of OA is unsatisfactory, which can be minimized by changing lifestyle and other treatment modalities if diagnosed and managed in the early stages, indicating the importance of early diagnosis and monitoring of cartilage injury. Ultrasound technology has been used for timely diagnosis and even cartilage injury treatment, which is convenient and safe for the patient owing to no radiation exposure. Studies have demonstrated the effectiveness of ultrasound and its various quantitative ultrasound parameters, like ultrasound roughness index (URI), reflection coefficient (R), apparent integrated backscatter (AIB), thickness, and ultrasound elastography, in the early and accurate assessment of OA cartilage pathological changes, including surface and internal tissue, hardness, and thickness. Although many challenges are faced in the clinical application of this technology in diagnosis, ultrasound and ultrasound-assisted techniques offer a lot of promise for detecting early cartilage damage in OA. In this review, we have discussed the evaluation of ultrasonic cartilage quantitative parameters for early pathological cartilage changes.


Subject(s)
Cartilage, Articular , Osteoarthritis , Ultrasonography , Humans , Osteoarthritis/diagnostic imaging , Ultrasonography/methods , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology
7.
Int J Biol Macromol ; 276(Pt 1): 133746, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004252

ABSTRACT

Pectin, a polysaccharide found in plant cell walls, is characterized by a high abundance of hydroxyl groups and carboxylic acid groups, which results in a strong affinity for water and limits its suitability as a film material. This study aimed to modulate the esterification degree of PEC films by adjusting the concentration of acetic anhydride, and assess the impact of acetic anhydride esterification modification on the properties of the resultant PEC films. The results demonstrated successful grafting of acetic anhydride onto the galacturonic acid ring in the PEC molecule through the esterification process. The hydrophobicity, thermal stability, barrier properties, and mechanical properties of the esterified PEC films were investigated. Among the various concentrations tested, the E-PEC-0.25 film exhibited the highest contact angle of 103.46° and tensile strength of 33.44 MPa, showcasing optimal performance. The E-PEC-0.1 film achieved the highest esterification degree of 0.94 and elongation at a break of 21.11 %. It also exhibited the transparency of 11.66 and the lowest water vapor transmission rate of 0.56 g·mm/(m2·h·kpa). Additionally, TGA and DSC tests revealed enhanced thermal stability of the esterification-prepared films. These findings highlight the potential of acetic anhydride tuning as a promising strategy for optimizing pectin film production.


Subject(s)
Acetic Anhydrides , Hydrophobic and Hydrophilic Interactions , Pectins , Pectins/chemistry , Esterification , Acetic Anhydrides/chemistry , Tensile Strength , Temperature
8.
ChemSusChem ; : e202400899, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010791

ABSTRACT

The selective conversion of biomass fermentation derived from an acetone-butanol-ethanol (ABE) mixture into high-value biofuels is of paramount importance for industrial applications. However, challenges persist in effectively controlling the selectivity of long carbon chain ketones in elevated ABE conversion. In this research, a Ca-doped Ni-CaO-SiO2 catalyst was designed and employed to achieve a remarkable conversion of 89.9% into ketone products from the extracted ABE mixture. The selectivity for C8+ ketones reaches 41.8%, demonstrating exceptional performance. The reversible phase transition between Ca2SiO4 and CaCO3 enhances the recyclability, thereby improving the sustainability of the process. Additionally, the trace intermediate 3-hepten-2-one was successfully detected using two-dimensional GC×GC-MS, elucidating the conversion pathway in the catalytic upgrading of the ABE mixture. This finding offers a potential route for the efficient utilization of biomass and the highly selective production of value-added chemicals.

9.
J Environ Manage ; 365: 121592, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963959

ABSTRACT

Methane, either as natural gas or as a resource obtained from various bioprocesses (e.g., digestion, landfill) can be converted to carbon and hydrogen according to. CH4(g)→C(s)+2H2(g)ΔH298K=74.8kJ/mol. Previous research has stressed the growing importance of substituting the high-temperature Steam Methane Reforming (SMR) by a moderate temperature Catalytic Methane Decomposition (CMD). The carbon formed is moreover of nanotube nature, in high industrial demand. To avoid the use of an inert support for the active catalyst species, e.g., Al2O3 for Fe, leading to a progressive contamination of the catalyst by support debris and coking of the catalyst, the present research investigates the use of carbon nanotubes (CNTs) as Fe-support. Average CH4 conversions of 75-85% are obtained at 700 °C for a continuous operation of 40 h. The produced CNT from the methane conversion can be continuously removed from the catalyst bed by carry-over due to its bulk density difference (∼120 kg/m3) with the catalyst itself (∼1500 kg/m3). CNT properties are fully specified. No thermal regeneration of the catalyst is required. A tentative process layout and economic analysis demonstrate the scalability of the process and the very competitive production costs of H2 and CNT.


Subject(s)
Iron , Methane , Nanotubes, Carbon , Methane/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Iron/chemistry , Hydrogen/chemistry , Temperature
10.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013878

ABSTRACT

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Subject(s)
Cell Differentiation , Forkhead Box Protein O1 , Interferon-beta , T-Lymphocytes, Regulatory , Ubiquitin-Protein Ligases , Ubiquitination , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mice , Humans , Interferon-beta/metabolism , Mice, Inbred C57BL , Cell Nucleus/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Active Transport, Cell Nucleus , Female , Mice, Knockout , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , HEK293 Cells
12.
Insights Imaging ; 15(1): 134, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837049

ABSTRACT

OBJECTIVE: To investigate whether intrauterine chilled saline can reduce endometrial impairment during US-guided percutaneous microwave ablation (PMWA) of adenomyosis. METHODS: An open-label, randomized trial was conducted with sixty symptomatic adenomyosis patients who were randomly assigned (1:1) to receive PMWA treatment assisted by intrauterine saline instillation (study group) or traditional PMWA treatment alone (control group). The primary endpoint was endometrial perfusion impairment grade on post-ablation contrast-enhanced MRI. The secondary endpoints were endometrial dehydration grade, ablation rate, and intra-ablation discomfort. RESULTS: The baseline characteristics of the two groups were similar. The incidence rates of endometrial perfusion impairment on MRI in the study and control groups were 6.7% (2/30) and 46.7% (14/30), respectively (p < 0.001). There were 28 (93.3%), 2 (6.7%), 0, and 0 patients in the study group and 16 (53.3%), 7 (23.3%), 5 (16.7%), and 2 (6.7%) in the control group (p < 0.001) who had grade 0, 1, 2, and 3 perfusion impairment, respectively. Additionally, there were 27 (90%), 3 (10%), and 0 patients in the study group and 19 (63.3%), 10 (33.3%), and 1 (3.3%) in the control group who had grade 0, 1, and 2 endometrial dehydration (p = 0.01). The ablation rates achieved in the study and control groups were 93.3 ± 17% (range: 69.2-139.6%) and 99.7 ± 15.7% (range: 71.5-129.8%), and they were not significantly different (p = 0.14). No significant difference was found in the intra-ablation discomfort. CONCLUSION: Intrauterine chilled saline can effectively reduce endometrial impairment after PMWA treatment for adenomyosis. CRITICAL RELEVANCE STATEMENT: This trial demonstrated that the instillation of intrauterine chilled saline reduced endometrial impairment on MRI during PMWA of adenomyosis. This approach allows more precise and safe ablation in clinical practice. KEY POINTS: Endometrial impairment occurs in the PMWA treatment of adenomyosis. Intrauterine chilled saline can reduce endometrial impairment during PMWA for adenomyosis. An intrauterine catheter is a practical endometrial protecting method during thermal ablation. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100053582. Registered 24 November 2021, www.chictr.org.cn/showproj.html?proj=141090 .

13.
Bioprocess Biosyst Eng ; 47(7): 1095-1105, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38847888

ABSTRACT

In this research, to provide an optimal growth medium for the production of iturin A, the concentrations of key amino acid precursors were optimized in shake flask cultures using the response surface method. The optimized medium were applied in a biofilm reactor for batch fermentation, resulting in enhanced production of iturin A. On this basis, a step-wise pH control strategy and a combined step-wise pH and temperature control strategy were introduced to further improve the production of iturin A. Finally, the fed-batch fermentation was performed based on combined step-wise pH and temperature control. The titer and productivity of iturin A reached 7.86 ± 0.23 g/L and 65.50 ± 1.92 mg/L/h, respectively, which were 37.65 and 65.20% higher than that before process optimization.


Subject(s)
Bacillus , Biofilms , Bioreactors , Biofilms/growth & development , Bacillus/metabolism , Bacillus/growth & development , Hydrogen-Ion Concentration , Culture Media , Fermentation , Temperature , Peptides, Cyclic
14.
Cell Commun Signal ; 22(1): 269, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745240

ABSTRACT

BACKGROUND: The pathway involving PTEN-induced putative kinase 1 (PINK1) and PARKIN plays a crucial role in mitophagy, a process activated by artesunate (ART). We propose that patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis exhibit insufficient mitophagy, and ART enhances mitophagy via the PINK1/PARKIN pathway, thereby providing neuroprotection. METHODS: Adult female mice aged 8-10 weeks were selected to create a passive transfer model of anti-NMDAR encephalitis. We conducted behavioral tests on these mice within a set timeframe. Techniques such as immunohistochemistry, immunofluorescence, and western blotting were employed to assess markers including PINK1, PARKIN, LC3B, p62, caspase3, and cleaved caspase3. The TUNEL assay was utilized to detect neuronal apoptosis, while transmission electron microscopy (TEM) was used to examine mitochondrial autophagosomes. Primary hippocampal neurons were cultured, treated, and then analyzed through immunofluorescence for mtDNA, mtROS, TMRM. RESULTS: In comparison to the control group, mitophagy levels in the experimental group were not significantly altered, yet there was a notable increase in apoptotic neurons. Furthermore, markers indicative of mitochondrial leakage and damage were found to be elevated in the experimental group compared to the control group, but these markers showed improvement following ART treatment. ART was effective in activating the PINK1/PARKIN pathway, enhancing mitophagy, and diminishing neuronal apoptosis. Behavioral assessments revealed that ART ameliorated symptoms in mice with anti-NMDAR encephalitis in the passive transfer model (PTM). The knockdown of PINK1 led to a reduction in mitophagy levels, and subsequent ART intervention did not alleviate symptoms in the anti-NMDAR encephalitis PTM mice, indicating that ART's therapeutic efficacy is mediated through the activation of the PINK1/PARKIN pathway. CONCLUSIONS: At the onset of anti-NMDAR encephalitis, mitochondrial damage is observed; however, this damage is mitigated by the activation of mitophagy via the PINK1/PARKIN pathway. This regulatory feedback mechanism facilitates the removal of damaged mitochondria, prevents neuronal apoptosis, and consequently safeguards neural tissue. ART activates the PINK1/PARKIN pathway to enhance mitophagy, thereby exerting neuroprotective effects and may achieve therapeutic goals in treating anti-NMDAR encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Artesunate , Disease Models, Animal , Neuroprotective Agents , Protein Kinases , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Mice , Female , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/pathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Protein Kinases/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Microscopy, Electron, Transmission , Mitophagy/drug effects , Apoptosis/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Hippocampus/pathology , Hippocampus/drug effects , Hippocampus/metabolism
15.
Nature ; 629(8014): 1158-1164, 2024 May.
Article in English | MEDLINE | ID: mdl-38750355

ABSTRACT

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Subject(s)
Oryza , Plant Immunity , Plant Proteins , Ubiquitin , Animals , Chitin/metabolism , Homeostasis , Ligands , Oryza/enzymology , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Phosphorylation , Plant Proteins/antagonists & inhibitors , Plant Proteins/immunology , Plant Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Phosphoserine/metabolism , Conserved Sequence
16.
Front Med (Lausanne) ; 11: 1292473, 2024.
Article in English | MEDLINE | ID: mdl-38695024

ABSTRACT

Osteoarthritis (OA) is distinguished by pathological alterations in the synovial membrane, articular cartilage, and subchondral bone, resulting in physical symptoms such as pain, deformity, and impaired mobility. Numerous research studies have validated the effectiveness of low-intensity pulsed ultrasound (LIPUS) in OA treatment. The periodic mechanical waves generated by LIPUS can mitigate cellular ischemia and hypoxia, induce vibration and collision, produce notable thermal and non-thermal effects, alter cellular metabolism, expedite tissue repair, improve nutrient delivery, and accelerate the healing process of damaged tissues. The efficacy and specific mechanism of LIPUS is currently under investigation. This review provides an overview of LIPUS's potential role in the treatment of OA, considering various perspectives such as the synovial membrane, cartilage, subchondral bone, and tissue engineering. It aims to facilitate interdisciplinary scientific research and further exploration of LIPUS as a complementary technique to existing methods or surgery. Ongoing research is focused on determining the optimal dosage, frequency, timing, and treatment strategy of LIPUS for OA. Additional research is required to clarify the precise mechanism of action and potential impacts on cellular, animal, and human systems prior to its integration into therapeutic applications.

17.
Plants (Basel) ; 13(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38592879

ABSTRACT

Plants must adapt to the complex effects of several stressors brought on by global warming, which may result in interaction and superposition effects between diverse stressors. Few reports are available on how drought stress affects Xanthomonas albilineans (Xa) infection in sugarcane (Saccharum spp. hybrids). Drought and leaf scald resistance were identified on 16 sugarcane cultivars using Xa inoculation and soil drought treatments, respectively. Subsequently, four cultivars contrasting to drought and leaf scald resistance were used to explore the mechanisms of drought affecting Xa-sugarcane interaction. Drought stress significantly increased the occurrence of leaf scald and Xa populations in susceptible cultivars but had no obvious effect on resistant cultivars. The ROS bursting and scavenging system was significantly activated in sugarcane in the process of Xa infection, particularly in the resistant cultivars. Compared with Xa infection alone, defense response via the ROS generating and scavenging system was obviously weakened in sugarcane (especially in susceptible cultivars) under Xa infection plus drought stress. Collectively, ROS might play a crucial role involving sugarcane defense against combined effects of Xa infection and drought stress.

18.
Small ; 20(34): e2401464, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38616766

ABSTRACT

Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.

19.
J Bone Oncol ; 45: 100599, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601920

ABSTRACT

Purpose: Spinal multiple myeloma (MM) and metastases are two common cancer types with similar imaging characteristics, for which differential diagnosis is needed to ensure precision therapy. The aim of this study is to establish radiomics models for effective differentiation between them. Methods: Enrolled in this study were 263 patients from two medical institutions, including 127 with spinal MM and 136 with spinal metastases. Of them, 210 patients from institution I were used as the internal training cohort and 53 patients from Institution II were used as the external validation cohort. Contrast-enhanced T1-weighted imaging (CET1) and T2-weighted imaging (T2WI) sequences were collected and reviewed. Based on the 1037 radiomics features extracted from both CET1 and T2WI images, Logistic Regression (LR), AdaBoost (AB), Support Vector Machines (SVM), Random Forest (RF), and multiple kernel learning based SVM (MKL-SVM) were constructed. Hyper-parameters were tuned by five-fold cross-validation. The diagnostic efficiency among different radiomics models was compared by accuracy (ACC), sensitivity (SEN), specificity (SPE), area under the ROC curve (AUC), YI, positive predictive value (PPV), negative predictive value (NPY), and F1-score. Results: Based on single-sequence, the RF model outperformed all other models. All models based on T2WI images performed better than those based on CET1. The efficiency of all models was boosted by incorporating CET1 and T2WI sequences, and the MKL-SVM model achieved the best performance with ACC, AUC, and F1-score of 0.862, 0.870, and 0.874, respectively. Conclusions: The radiomics models constructed based on MRI achieved satisfactory diagnostic performance for differentiation of spinal MM and metastases, demonstrating broad application prospects for individualized diagnosis and treatment.

20.
Opt Express ; 32(7): 11665-11672, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571008

ABSTRACT

We demonstrated a 978 nm laser diode (LD) side-pumped YSGG/Er:YSGG/YSGG composite crystal with a size of Ф 3 mm × 65 mm and continuous-wave (CW) mode. By optimizing resonator length and output mirror transmittance, a maximum output power of 28.02 W is generated, corresponding to slope efficiency of 17.55% and optical-optical efficiency of 12.29%, respectively. The thermal focal lengths are obtained by resonator stability condition. The laser wavelength is centered near 2.8 µm. Moreover, the beam quality factors M x2/M y2 are fitted to be 8.14 and 7.35, respectively. The above results indicate that a high-performance 2.8 µm CW laser can be achieved by LD side-pumped YSGG/Er:YSGG/YSGG composite crystal with excellent heat dissipation ability, which promotes effectively the development and applications of the mid-infrared solid-state lasers.

SELECTION OF CITATIONS
SEARCH DETAIL