Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2822: 419-429, 2024.
Article in English | MEDLINE | ID: mdl-38907932

ABSTRACT

Ribozymes engineered from the RNase P catalytic RNA (M1 RNA) represent promising gene-targeting agents for clinical applications. We describe in this report an in vitro amplification and selection procedure for generating active RNase P ribozyme variants with improved catalytic efficiency. Using the amplification and selection procedure, we have previously generated ribozyme variants that were highly active in cleaving a herpes simplex virus 1-encoded mRNA in vitro and inhibiting its expression in virally infected human cells. In this chapter, we use an overlapping region of the mRNAs for the IE1 and IE2 proteins of human cytomegalovirus (HCMV) as a target substrate. We provide detailed protocols and include methods for establishing the procedure for the amplification and selection of active mRNA-cleaving RNase P ribozymes. The in vitro amplification and selection system represents an excellent approach for engineering highly active RNase P ribozymes that can be used in both basic research and clinical applications.


Subject(s)
Gene Targeting , RNA, Catalytic , Ribonuclease P , Ribonuclease P/genetics , Ribonuclease P/metabolism , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Humans , Gene Targeting/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Genetic Engineering/methods , Cytomegalovirus/genetics
2.
Viruses ; 13(2)2021 02 22.
Article in English | MEDLINE | ID: mdl-33671590

ABSTRACT

Herpes simplex virus 1 (HSV-1) is a herpesvirus that may cause cold sores or keratitis in healthy or immunocompetent individuals, but can lead to severe and potentially life-threatening complications in immune-immature individuals, such as neonates or immune-compromised patients. Like all other herpesviruses, HSV-1 can engage in lytic infection as well as establish latent infection. Current anti-HSV-1 therapies effectively block viral replication and infection. However, they have little effect on viral latency and cannot completely eliminate viral infection. These issues, along with the emergence of drug-resistant viral strains, pose a need to develop new compounds and novel strategies for the treatment of HSV-1 infection. Genome editing methods represent a promising approach against viral infection by modifying or destroying the genetic material of human viruses. These editing methods include homing endonucleases (HE) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein (Cas) RNA-guided nuclease system. Recent studies have showed that both HE and CRISPR/Cas systems are effective in inhibiting HSV-1 infection in cultured cells in vitro and in mice in vivo. This review, which focuses on recently published progress, suggests that genome editing approaches could be used for eliminating HSV-1 latent and lytic infection and for treating HSV-1 associated diseases.


Subject(s)
Gene Editing/methods , Herpesviridae Infections/virology , Herpesvirus 1, Human/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Viral , Herpesvirus 1, Human/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...