Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Int J Pharm ; 666: 124789, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366529

ABSTRACT

Berberine hydrochloride (BER), a promising candidate in treating tumors, diabetes and pain management, has relatively low oral absorption and bioavailability due to its low intestinal permeability. To address these challenges, we developed a BER and lornoxicam cocrystal (BLCC) by a solvent evaporation method and characterized it using X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. Compared with BER, BLCC exhibited an instant release in pH 1.0 HCl and a sustained release up to 24 h in pH 6.8 buffer solutions and water. The Caco-2 permeability of BLCC has shown a remarkable increase compared to that of BER (i.e., Papp(a→b): 50.30 × 10-7vs 8.82 × 10-7 cm/s), which is attributed to the improved lipophilicity of BER (i.e., log P: 1.29 vs -1.83) and the reduced efflux amount of BER (i.e., ER: 1.71 vs 12.11). Furthermore, BLCC demonstrated a relative bioavailability of 410 % in comparison to the original BER, due to notably enhanced intestinal permeability of BLCC and its continuous dissolution in simulated intestinal fluid. BLCC has the potential to tailor the dissolution behavior, improve intestinal permeability, and boost the bioavailability of BER. This indicates that the cocrystal strategy holds promise as an effective approach to improving the oral absorption and bioavailability of active pharmaceutical molecules with low permeability during drug development.

2.
mBio ; : e0230824, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345136

ABSTRACT

The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE: The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.

3.
Mol Neurobiol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39278884

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.

4.
RSC Med Chem ; 15(9): 3038-3047, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39309365

ABSTRACT

The interaction of PD-L1 and PD-1 transmits the inhibitory signal to reduce the proliferation of antigen-specific T-cells in lymph nodes. The expression of PD-L1 confers a potential escaping mechanism of tumors from the host immune system. Blocking the interaction of PD-1 and PD-L1 enables tumor-reactive T cells to overcome regulatory mechanisms and induce an effective antitumor response. The hydrophobic tag tethering degrader (HyTTD) contains a hydrophobic moiety, binding to the protein of interest (POI) to mimic the misfolding state of the POI, thereby inducing the degradation of POI. In this work, using the HyTTD strategy, we selected the diphenylmethyl derivatives as the PD-L1 binding motif for PD-L1 to develop the degraders for PD-L1, and multiple hydrophobic tags were attached. As a result, two HyTTDs Z2d and Z3d efficiently decreased the protein level of PD-L1 in both NCI-H460 and HT-1080 cells with low cytotoxicity. Meanwhile, the reduction of PD-L1 protein levels by Z2d/Z3d was counteracted by MG132, which indicated that Z2d/Z3d degraded PD-L1 through the proteasome pathway. Moreover, the molecular modeling results indicated that the HyT group of Z2d or Z3d extended the surface of the protein to mimic the misfold. Importantly, our work also identified a novel HyT, which could be applied to develop the HyTTD for other target proteins.

5.
Heliyon ; 10(16): e35339, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229501

ABSTRACT

Stroke is a major cause of adult disability worldwide, often involving disruption of the blood-brain barrier (BBB). Repairing the BBB is crucial for stroke recovery, and pericytes, essential components of the BBB, are potential intervention targets. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a treatment for functional impairments after stroke, with potential effects on BBB integrity. However, the underlying mechanisms remain unclear. In this study using a transient middle cerebral artery occlusion (tMCAO) rat model, we investigated the impact of rTMS on post-stroke BBB. Through single-cell sequencing (ScRNAs), we observed developmental relationships among pericytes, endothelial cells, and vascular smooth muscle cells, suggesting the differentiation potential of pericytes. A distinct subcluster of pericytes emerged as a potential therapeutic target for stroke. Additionally, our results revealed enhanced cellular communication among these cell types, enriching signaling pathways such as IGF, TNF, NOTCH, and ICAM. Analysis of differentially expressed genes highlighted processes related to stress, differentiation, and development. Notably, rTMS intervention upregulated Reck in vascular smooth muscle cells, implicating its role in the classical Wnt signaling pathway. Overall, our bioinformatics findings suggest that rTMS may modulate BBB permeability and promote vascular regeneration following stroke. This might happen through 20 Hz rTMS promoting pericyte differentiation into vascular smooth muscle cells, upregulating Reck, then activating the classical Wnt signaling pathway, and facilitating vascular regeneration and BBB stability.

6.
J Org Chem ; 89(17): 12062-12070, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39146516

ABSTRACT

A TMSCN-promoted difunctionalization of styrenes with CHCl3 and TBHP is reported via the radical addition/cross coupling process. A wide range of dichloromethyl-substituted alcohol derivatives were synthesized under transition-metal-free conditions. Besides, this method is also applicable to unactive alkenes. The key to this success lies in the role of TMSCN, which prevents the reaction toward dichloromethylperoxylation of olefins. This represents an alternative approach for synthesizing diverse alcohol derivatives using readily available substrates, holding significant promise in the fields of pharmaceutical chemistry and natural product synthesis.

7.
AAPS PharmSciTech ; 25(6): 183, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138765

ABSTRACT

The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.


Subject(s)
Biological Availability , Indoles , Solubility , Indoles/pharmacokinetics , Indoles/chemistry , Indoles/administration & dosage , Administration, Oral , Animals , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Male , Spectroscopy, Fourier Transform Infrared/methods , Drug Compounding/methods , Rabbits , Polymers/chemistry , Hot Melt Extrusion Technology/methods , Drug Liberation
8.
Front Cardiovasc Med ; 11: 1382702, 2024.
Article in English | MEDLINE | ID: mdl-39105077

ABSTRACT

Background: This Mendelian randomization (MR) study aimed to explore the causal relationship between the genetic predisposition to type 2 diabetes mellitus (T2DM) and aortic dissection (AD), and to assess associations with genetically predicted glycemic traits. The study sought to verify the inverse relationship between T2DM and AD using a more robust and unbiased method, building on the observational studies previously established. Materials and methods: The study employed a two-sample and multivariable MR approach to analyze genetic data from the DIAbetes Meta-ANalysis of Trans-Ethnic association studies (DIAMANTE) with 74,124 cases and 824,006 controls, and the Meta-Analyses of Glucose and Insulin-Related Traits Consortium (MAGIC) involving up to 196,991 individuals. For AD data, FinnGen Release 10 was used, including 967 cases and 381,977 controls. The research focused on three foundational MR assumptions and controlled for confounders like hypertension. Genetic instruments were selected for their genome-wide significance, and multiple MR methods and sensitivity analyses were conducted. Results: The study revealed no significant effect of genetic predisposition to T2DM on the risk of AD. Even after adjusting for potential confounders, the results were consistent, indicating no causal relationship. Additionally, glycemic traits such as fasting glucose, fasting insulin, and HbA1c levels did not show a significant impact on AD susceptibility. The findings remained stable across various MR models and sensitivity analyses. In contrast, genetic liability to T2DM and glycemic traits showed a significant association with coronary artery disease (CAD), aligning with the established understanding. Conclusion: Contrary to previous observational studies, this study concludes that genetic predisposition to T2DM does not confer protection against AD. These findings underscore the imperative for further research, particularly in exploring the preventative potential of T2DM treatments against AD and to facilitate the development of novel therapeutic interventions.

9.
Abdom Radiol (NY) ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088018

ABSTRACT

PURPOSE: The aim of this study was to investigate the clinical and multi-slice spiral computed tomography angiography (MSCTA) characteristics for the diagnosis of infected AAA. METHODS: This retrospective comparative study included patients who were diagnosed with AAA at our hospital between January 2014 and May 2023. RESULTS: A total of 40 patients were included, comprising 20 with infected AAA and 20 with non-infected AAA. Patients with infected AAA were more likely to be younger (62.9 ± 10.1 vs. 70.0 ± 4.4 years, P = 0.007) and to present with fever [7 (35%) vs. 1 (5%), P = 0.026], pain [15 (75%) vs. 2 (10%), P < 0.001], higher C-reactive protein levels (60.4 ± 57.0 vs. 4.1 ± 2.9 mg/l, P = 0.005), and higher erythrocyte sedimentation rates (47.7 ± 23.4 vs. 15.2 ± 8.3 mm/h, P < 0.001) compared to those with non-infected AAA. Moreover, those with infected AAA exhibited significantly more eccentric saccular morphology [17 (85%) vs. 1 (5%), P = 0.002], a smaller longitudinal-transverse ratio (1.12 ± 0.33 vs. 2.33 ± 0.54, P = 0.001), thicker peri-aneurysmal soft tissue (2.29 ± 1.48 vs. 0.73 ± 0.55 cm, P < 0.001), more lobulated margins [18 (90%) vs. 1 (5%), P = 0.001], lower aortic calcification scores (49 vs. 56, P < 0.001), more pneumatosis [6 (30%) vs. 0 (0%), P = 0.014], more ruptures [15 (75%) vs. 5 (20%), P = 0.002], more blurred peri-abdominal aortic fat spaces [16 (80%) vs. 2 (10%), P = 0.001], more adjacent bone destruction [5 (25%) vs. 0 (0%), P = 0.025], more involvement of the psoas major muscle [8 (40%) vs. 1 (5%), P = 0.005], more lymphadenectasis [8 (40%) vs. 1 (5%), P = 0.020], and less tortuous aortas [2 (10%) vs. 9 (45%), P = 0.034] compared with those with non-infected AAA. CONCLUSION: The clinical manifestations and MSCTA characteristics may differ between infected and non-infected AAA.

10.
Pathogens ; 13(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39057793

ABSTRACT

Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.

11.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928308

ABSTRACT

Hepatic ischemia/reperfusion injury (IRI) is an important factor affecting liver regeneration and functional recovery postoperatively. Many studies have suggested that mesenchymal stem cells (MSCs) contribute to hepatic tissue repair and functional recovery through paracrine mechanisms mediated by exosomes. Minipigs exhibit much more similar characteristics of the liver to those of humans than rodents. This study aimed to explore whether exosomes from adipose-derived MSCs (ADSCs-exo) could actively promote liver regeneration after hepatectomy combined with HIRI in minipigs and the role they play in the cell proliferation process. This study also compared the effects and differences in the role of ADSCs and ADSCs-exo in the inflammatory response and liver regeneration. The results showed that ADSCs-exo suppressed histopathological changes and reduced inflammatory infiltration in the liver; significantly decreased levels of ALT, TBIL, HA, and the pro-inflammatory cytokines TNF-α, IL-6, and CRP; increased levels of the anti-inflammatory cytokine IL-10 and the pro-regeneration factors Ki67, PCNA, CyclinD1, HGF, STAT3, VEGF, ANG1, ANG2; and decreased levels of the anti-regeneration factors SOCS3 and TGF-ß. These indicators above showed similar changes with the ADSCs intervention group. Indicating that ADSCs-exo can exert the same role as ADSCs in regulating inflammatory responses and promoting liver regeneration. Our findings provide experimental evidence for the possibility that ADSCs-exo could be considered a safe and effective cell-free therapy to promote regeneration of injured livers.


Subject(s)
Adipose Tissue , Exosomes , Liver Regeneration , Liver , Mesenchymal Stem Cells , Swine, Miniature , Animals , Swine , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Exosomes/metabolism , Exosomes/transplantation , Adipose Tissue/cytology , Adipose Tissue/metabolism , Liver/metabolism , Liver/pathology , Cell Proliferation , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Hepatectomy , Cytokines/metabolism , Male
12.
Bioorg Chem ; 149: 107466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843684

ABSTRACT

Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.


Subject(s)
Autophagy , Drug Development , Proteolysis , Autophagy/drug effects , Humans , Proteolysis/drug effects , Lysosomes/metabolism , Animals , Proteins/metabolism , Proteins/chemistry , Proteins/antagonists & inhibitors , Molecular Structure
13.
Surgery ; 176(2): 531-534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839433

ABSTRACT

We aimed to analyze the feasibility of endovascular treatment for brucellosis-related aorta-iliac artery pseudoaneurysm. We did a statistical analysis that among the 11 cases, the thoracic aorta was involved in 3 cases, the abdominal aorta was involved in 6 cases, and the iliac artery was involved in 2 cases. Five patients had a history of contact with cattle and sheep, 3 had a history of drinking raw milk, 10 patients had a fever before the operation, and 11 patients had positive serum agglutination test. Blood culture was positive in 2 patients. All patients were given anti-brucellosis treatment immediately after diagnosis. One died of aortic rupture 5 days after emergency endovascular gastrointestinal bleeding. Endovascular-covered stent implantation and active anti-brucellosis therapy were used to treat 10 patients. The follow-up period was 8 years without aortic complications or death for all patients. We think early diagnosis and a combination of anti-brucellosis drugs and endovascular therapy may be the first choice for treating the pseudoaneurysm caused by Brucella.


Subject(s)
Aneurysm, False , Brucellosis , Endovascular Procedures , Humans , Aneurysm, False/therapy , Aneurysm, False/microbiology , Aneurysm, False/etiology , Aneurysm, False/diagnosis , Brucellosis/complications , Brucellosis/diagnosis , Male , Endovascular Procedures/methods , Female , Middle Aged , Adult , Stents , Aged , Aneurysm, Infected/microbiology , Aneurysm, Infected/diagnosis , Aneurysm, Infected/therapy , Iliac Artery/surgery , Iliac Aneurysm/microbiology , Iliac Aneurysm/surgery , Iliac Aneurysm/therapy , Iliac Aneurysm/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Treatment Outcome , Retrospective Studies
14.
Animals (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731362

ABSTRACT

This study investigated the efficacy of a composite probiotics composed of lactobacillus plantarum, lactobacillus reuteri, and bifidobacterium longum in alleviating oxidative stress in weaned piglets and pregnant sows. Evaluations of growth, oxidative stress, inflammation, intestinal barrier, and fecal microbiota were conducted. Results showed that the composite probiotic significantly promoted average daily gain in piglets (p < 0.05). It effectively attenuated inflammatory responses (p < 0.05) and oxidative stress (p < 0.05) while enhancing intestinal barrier function in piglets (p < 0.01). Fecal microbiota analysis revealed an increase in the abundance of beneficial bacteria such as faecalibacterium, parabacteroides, clostridium, blautia, and phascolarctobacterium in piglet feces and lactobacillus, parabacteroides, fibrobacter, and phascolarctobacterium in sow feces, with a decrease in harmful bacteria such as bacteroides and desulfovibrio in sow feces upon probiotic supplementation. Correlation analysis indicated significant negative associations of blautia with inflammation and oxidative stress in piglet feces, while treponema and coprococcus showed significant positive associations. In sow feces, lactobacillus, prevotella, treponema, and CF231 exhibited significant negative associations, while turicibacter showed a significant positive association. Therefore, the composite probiotic alleviated oxidative stress in weaned piglets and pregnant sows by modulating fecal microbiota composition.

15.
Eur J Pharm Biopharm ; 200: 114337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789062

ABSTRACT

Orodispersible films (ODFs) have emerged as an advanced and patient-friendly delivery system due to ease of administration, improved patient compliance, quick release and taste-masking of active pharmaceutical ingredients. This research reports the preparation of the ODF containing eugenol and borax (EB-ODF) by a solvent casting technique for treating mouth ulcers. The EB-ODF consisted of vinyl pyrrolidone/vinyl acetate copolymer (Kollidon® VA64, VA64) and hydroxypropyl methylcellulose (HPMC-K250) as the film formers where eugenol and borax were loaded. The thickness of the EB-ODF obtained was 0.119 ± 0.001 mm and the tensile strength was 13.1 ± 1.1 N/mm2 (p > 0.05). The prepared films disintegrated in the oral cavity within 30 s and over 90% of the eugenol was released from the film in the first 5 min. Furthermore, the combined application of eugenol and borax, loaded in EB-ODF, displayed notable synergetic antibacterial property against both gram-negative and gram-positive bacteria. In an in-vivo study on a rat model with chemical burn-induced oral ulcers, the EB-ODF treatment group had a 100% reduction in ulcer area (p > 0.05) after 10 days of treatment and demonstrated a 38.7% higher reduction in oral ulcer area compared to the Dingpeng Cream treatment group (p < 0.0001). The EB-ODF treatment group showed minimal oral irritation, scoring only 1 point and a 65% preference in the taste tests (p < 0.0001). In summary, EB-ODF had successfully overcome the poor palatability of commercially available formulation and provided notable potential for further ulcer treatment product development.


Subject(s)
Borates , Eugenol , Oral Ulcer , Eugenol/administration & dosage , Eugenol/pharmacology , Animals , Rats , Borates/administration & dosage , Oral Ulcer/drug therapy , Male , Administration, Oral , Drug Delivery Systems/methods , Drug Liberation , Hypromellose Derivatives/chemistry , Rats, Wistar , Tensile Strength
16.
Behav Brain Res ; 467: 115018, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38678971

ABSTRACT

Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Rats, Sprague-Dawley , Transcranial Magnetic Stimulation , Animals , Neuronal Plasticity/physiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Rats , Hippocampus/metabolism , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/complications , Disks Large Homolog 4 Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Maze Learning/physiology
17.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670773

ABSTRACT

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Glucans , Hydrogels , Nanoparticles , Polylysine , Staphylococcus aureus , Wound Healing , Xylans , Glucans/chemistry , Glucans/pharmacology , Animals , Wound Healing/drug effects , Xylans/chemistry , Xylans/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Polylysine/chemistry , Polylysine/pharmacology , Mice , Nanoparticles/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Staphylococcal Infections/drug therapy , Cross-Linking Reagents/chemistry , Wound Infection/drug therapy , Male
18.
Sensors (Basel) ; 24(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38676089

ABSTRACT

The Galileo satellite navigation system now provides initial services. With further satellite launches, the performance of Galileo will gradually improve, and new services will be introduced. This study aims to provide a comprehensive analysis of Galileo Single Point Positioning (SPP) using different broadcast ephemeris data sources. This study investigates the completeness of Galileo navigation message records from different institutions. The results show that IGS provides the best completeness across different data sources (ECR > 70%), while IGN exhibits the lowest completeness. Analyze the proportions of different data sources within the Galileo navigation message in the broadcast ephemeris files provided by IGS during the study period. The proportions of FNAV_258, INAV_513, INAV_516, and INAV_517 during the study period are 25.83%, 24.76%, 23.61%, and 25.80%, respectively, suggesting better data completeness for FNAV_258 and INAV_517 and poorer completeness for INAV_513 and INAV_516. Finally, this study explores SPP solutions for GPS and Galileo systems using different data sources. The results indicate that a higher ECR corresponds to better positioning performance. Although GPS exhibits smaller error fluctuations and smoother positioning results, Galileo's SPP positioning accuracy surpasses that of GPS. The introduction of dual-frequency observations effectively reduces data dispersion and enhances vertical positioning accuracy.

20.
Front Cell Infect Microbiol ; 14: 1373737, 2024.
Article in English | MEDLINE | ID: mdl-38686094

ABSTRACT

Background: The mechanism by which high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) improves swallowing function by regulating intestinal flora remains unexplored. We aimed to evaluate this using fecal metabolomics and 16S rRNA sequencing. Methods: A Post-stroke dysphagia (PSD) rat model was established by middle cerebral artery occlusion. The magnetic stimulation group received HF-rTMS from the 7th day post-operation up to 14th day post-surgery. Swallowing function was assessed using a videofluoroscopic swallowing study (VFSS). Hematoxylin-eosin (H&E) staining was used to assess histopathological changes in the intestinal tissue. Intestinal flora levels were evaluated by sequencing the 16S rRNA V3-V4 region. Metabolite changes within the intestinal flora were evaluated by fecal metabolomics using liquid chromatography-tandem mass spectrometry. Results: VFSS showed that the bolus area and pharyngeal bolus speed were significantly decreased in PSD rats, while the bolus area increased and pharyngeal transit time decreased after HF-rTMS administration (p < 0.05). In the PSD groups, H&E staining revealed damaged surface epithelial cells and disrupted cryptal glands, whereas HF-rTMS reinforced the integrity of the intestinal epithelial cells. 16S rRNA sequencing indicated that PSD can disturb the intestinal flora and its associated metabolites, whereas HF-rTMS can significantly regulate the composition of the intestinal microflora. Firmicutes and Lactobacillus abundances were lower in the PSD group than in the baseline group at the phylum and genus levels, respectively; however, both increased after HF-rTMS administration. Levels of ceramides (Cer), free fatty acids (FA), phosphatidylethanolamine (PE), triacylglycerol (TAG), and sulfoquinovosyl diacylglycerol were increased in the PSD group. The Cer, FA, and DG levels decreased after HF-rTMS treatment, whereas the TAG levels increased. Peptococcaceae was negatively correlated with Cer, Streptococcus was negatively correlated with DG, and Acutalibacter was positively correlated with FA and Cer. However, these changes were effectively restored by HF-rTMS, resulting in recovery from dysphagia. Conclusion: These findings suggest a synergistic role for the gut microbiota and fecal metabolites in the development of PSD and the therapeutic mechanisms underlying HF-rTMS.


Subject(s)
Deglutition Disorders , Disease Models, Animal , Feces , Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Stroke , Animals , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Feces/chemistry , Rats , Metabolomics/methods , Stroke/complications , Stroke/therapy , Deglutition Disorders/therapy , Male , Transcranial Magnetic Stimulation/methods , Rats, Sprague-Dawley , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL