Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 542-551, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948287

ABSTRACT

Objective: Kisspeptin, a protein encoded by the KISS1 gene, functions as an essential factor in suppressing tumor growth. The intricate orchestration of cellular processes such as proliferation and differentiation is governed by the Notch1/Akt/Foxo1 signaling pathway, which assumes a central role in maintaining cellular homeostasis. In the specific context of this investigation, the focal point lies in a meticulous exploration of the intricate mechanisms underlying the regulatory effect of kisspeptin on the process of endometrial decidualization. This investigation delves into the interplay between kisspeptin and the Notch1/Akt/Foxo1 signaling pathway, aiming to elucidate its significance in the pathophysiology of recurrent spontaneous abortion (RSA). Methods: We enrolled a cohort comprising 45 individuals diagnosed with RSA, who were admitted to the outpatient clinic of the Reproductive Center at the Second Affiliated Hospital of Soochow University between June 2020 and December 2020. On the other hand, an additional group of 50 women undergoing elective abortion at the outpatient clinic of the Family Planning Department during the same timeframe was also included. To comprehensively assess the molecular landscape, Western blot and RT-qPCR were performed to analyze the expression levels of kisspeptin (and its gene KISS1), IGFBP1 (an established marker of decidualization), Notch1, Akt, and Foxo1 within the decidua. Human endometrial stromal cells (hESC) were given targeted interventions, including treatment with siRNA to disrupt KISS1 or exposure to kisspeptin10 (the bioactive fragment of kisspeptin), and were subsequently designated as the siKP group or the KP10 group, respectively. A control group comprised hESC was transfected with blank siRNA, and cell proliferation was meticulously evaluated with CCK8 assay. Following in vitro induction for decidualization across the three experimental groups, immunofluorescence assay was performed to identify differences in Notch1 expression and decidualization morphology between the siKP and the KP10 groups. Furthermore, RT-qPCR and Western blot were performed to gauge the expression levels of IGFBP1, Notch1, Akt, and Foxo1 across the three cell groups. Subsequently, decidualization was induced in hESC by adding inhibitors targeting Notch1, Akt, and Foxo1. The expression profiles of the aforementioned proteins and genes in the four groups were then examined, with hESC induced for decidualization without adding inhibitors serving as the normal control group. To establish murine models of normal pregnancy (NP) and RSA, CBA/J×BALB/c and CBA/J×DBA/2 mice were used. The mice were respectively labeled as the NP model and RSA model. The experimental groups received intraperitoneal injections of kisspeptin10 and kisspeptin234 (acting as a blocker) and were designated as RSA-KP10 and NP-KP234 groups. On the other hand, the control groups received intraperitoneal injections of normal saline (NS) and were referred to as RSA-NS and NP-NS groups. Each group comprised 6 mice, and uterine tissues from embryos at 9.5 days of gestation were meticulously collected for observation of embryo absorption and examination of the expression of the aforementioned proteins and genes. Results: The analysis revealed that the expression levels of kisspeptin, IGFBP1, Notch1, Akt, and Foxo1 were significantly lower in patients diagnosed with RSA compared to those in women with NP (P<0.01 for kisspeptin and P<0.05 for IGFBP1, Notch1, Akt, and Foxo1). After the introduction of kisspeptin10 to hESC, there was an observed enhancement in decidualization capability. Subsequently, the expression levels of Notch1, Akt, and Foxo1 showed an increase, but they decreased after interference with KISS1. Through immunofluorescence analysis, it was observed that proliferative hESC displayed a slender morphology, but they transitioned to a rounder and larger morphology post-decidualization. Concurrently, the expression of Notch1 increased, suggesting enhanced decidualization upon the administration of kisspeptin10, but the expression decreased after interference with KISS1. Further experimentation involved treating hESC with inhibitors specific to Notch1, Akt, and Foxo1 separately, revealing a regulatory sequence of Notch1/Akt/Foxo1 (P<0.05). In comparison to the NS group, NP mice administered with kisspeptin234 exhibited increased fetal absorption rates (P<0.001) and decreased expression of IGFBP1, Notch1, Akt, and Foxo1 (P<0.05). Conversely, RSA mice administered with kisspeptin10 demonstrated decreased fetal absorption rates (P<0.001) and increased expression levels of the aforementioned molecules (P<0.05). Conclusion: It is suggested that kisspeptin might exert its regulatory influence on the process of decidualization through the modulation of the Notch1/Akt/Foxo1 signaling cascade. A down-regulation of the expression levels of kisspeptin could result in suboptimal decidualization, which in turn might contribute to the development or progression of RSA.


Subject(s)
Abortion, Habitual , Decidua , Endometrium , Kisspeptins , Proto-Oncogene Proteins c-akt , Receptor, Notch1 , Signal Transduction , Adult , Female , Humans , Pregnancy , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Cell Proliferation , Decidua/metabolism , Decidua/cytology , Endometrium/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Kisspeptins/metabolism , Kisspeptins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/metabolism , Receptor, Notch1/genetics
2.
ACS Omega ; 9(23): 24299-24307, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882089

ABSTRACT

In semiconductor manufacturing, the sublimation drying process is crucial but poorly understood-particularly regarding the solidification of agents such as cyclohexanol on Si substrates. This knowledge gap results in inconsistent film properties and risks such as structural collapse. To address this critical gap in knowledge, the present study focused on an in-depth examination of the nucleation behavior exhibited by cyclohexanol during its cooling and solidification on Si substrates. Using a digital camera (GoPro10), the solidification process in experiments was recorded for a range of cooling rates and using substrates with distinct surface patterns. To evaluate temporal changes in crystal nucleation, video images were visually checked, and the temporal changes in the number of nuclei were examined. For a more quantitative analysis, the least-squares method was successfully employed to correlate mathematical equations to time-dependent nucleation data. Interestingly, the outcomes revealed significant correlations between the nucleation rate, cooling rate, and substrate pattern. In summary, this research offers a robust experimental framework for understanding the complex solidification behavior of cyclohexanol on Si substrates. The study contributes both qualitative and quantitative analyses, enriching our understanding of the variables that govern the solidification process, which has significant implications for enhancing the overall reliability and efficiency of semiconductor manufacturing.

3.
J Affect Disord ; 360: 229-241, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823591

ABSTRACT

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.


Subject(s)
Astrocytes , Benzhydryl Compounds , Diet, High-Fat , Gastrointestinal Microbiome , Glucosides , Neuroinflammatory Diseases , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Astrocytes/drug effects , Glucosides/pharmacology , Mice , Benzhydryl Compounds/pharmacology , Neuroinflammatory Diseases/drug therapy , Male , Mice, Inbred C57BL , Brain/drug effects , Brain-Gut Axis/drug effects , Disease Models, Animal , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Dysbiosis
4.
Front Microbiol ; 15: 1327630, 2024.
Article in English | MEDLINE | ID: mdl-38601933

ABSTRACT

Background and objectives: Growing studies show that gut microbiota is closely associated with depression. Acupuncture treatment could regulate the gut microbiota of many diseases. Here, we aim to observe the effect of electroacupuncture (EA) on gut microbiota in rats that showed depressive-like behavior. Materials and methods: The rats were randomly divided into normal group, chronic unpredictable mild stress model (CUMS) group, CUMS + electroacupuncture (EA) group, and CUMS + sham-electroacupuncture (Sham) group. The CUMS+EA rats were treated with EA stimulation at bilateral Zusanli (ST36) and Tianshu (ST25) acupoints for 2 weeks (0.7 mA, 2/100 Hz, 30 min/day). The rats in the sham EA group were treated with the same conditions without inserting needles and electrical stimulation. Behavioral tests were conducted by forced swimming test (FST), open field test (OFT), and sucrose preference test (SPT) to assess depression-like behavior in rats. The relative abundance of intestinal bacteria in rat feces was detected by 16S rRNA analysis. The expression of calcitonin-gene-related peptide (CGRP), vasoactive intestinal peptide (VIP), somatostatin (SST), and adrenocorticotropic hormone (ACTH) in serum was detected by ELISA kit, and VIP, CGRP, and SST in the colon were detected by qRT-PCR and Western blot. Results: Chronic unpredictable mild stress model rats exhibited depressive-like behaviors and had differential abundance vs. control rats. CUMS significantly decreased the relative abundance of Bifidobacterium and Streptococcus at the genus level, CGRP in plasma (p < 0.05), and significantly increased the intestine propulsion rate, the mRNA and protein expression of VIP, SST, and mRNA in the colon, and ATCH in plasma (p < 0.05). EA rats with microbial profiles were distinct from CUMS rats. EA markedly reduced the depressive-like behaviors, significantly increased the intestine propulsion rate, the relative abundance of Bacteroidetes, Proteobacteria, and Actinobacteria at the phylum level, Bifidobacterium and Streptococcus at the genus level, and VIP and CGRP in plasma (p < 0.05), and significantly decreased Firmicutes, the ratio of Firmicutes to Bacteroidetes at the phylum level, ACTH and SST in plasma, and SST mRNA in the colon (p < 0.05). Conclusion: The antidepressant effect of EA at ST36 and ST25 is related to regulating intestinal flora and the neurotransmitter system. Our study suggests that EA contributes to the improvement of depression, and gut microbiota may be one of the mechanisms of EA effect.

5.
Phys Chem Chem Phys ; 26(17): 13182-13197, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630138

ABSTRACT

The gasification of carbon with O2, CO2, and H2O oxidants plays an important role in several energy-based applications. As most of the industrial gasification processes are conducted under mixed-atmosphere conditions, the oxidation of carbon in binary oxidant mixtures becomes crucially important. Using reactive force-field (ReaxFF) potentials, extensive MD simulations were carried out on the oxidation behavior of graphene in mixed O2/H2O and O2/CO2 environments for a range of gas compositions and temperatures. A graphene sheet with a line defect comprising of eight and four-membered rings was used as the starting carbon structure. In addition to enhanced carbon gasification with oxygen additions, MD simulations showed synergistic interactions between different oxidants and their net influence on the overall reactivities. The gasification levels achieved under the binary system were higher than the linear combination of contributions from individual oxidants. The addition of ∼40% O2 in the binary mix was identified as the region with the highest reactivity during the initial stages of gasification. The oxidation reactions with oxygen were found to start instantaneously in the presence of H2O or CO2 instead of the usual initial delay. A very fast reaction kinetics was also observed in the initial stages in the presence of oxygen. Our results show that the gasification reactions under H2O and CO2 started at lower temperatures than O2 thereby creating a partially oxidized structure. Due to the presence of a large number of activation sites, very high rates of gasification were achieved with oxygen. These findings could help identify optimal oxidant compositions towards maximizing carbon gasification and minimizing CO2 emissions.

6.
Nanomaterials (Basel) ; 14(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38470793

ABSTRACT

Molten slag has different properties depending on its composition. The relationship between its composition, structure, and properties has been the focus of attention in industrial manufacturing processes. This review describes the atomistic scale mechanisms by which oxides of different compositions affect the properties and structure of slag, and depicts the current state of research in the atomic simulation of molten slag. At present, the research on the macroscopic properties of molten slag mainly focuses on viscosity, free-running temperature, melting point, and desulphurization capacity. Regulating the composition has become the most direct and effective way to control slag properties. Analysis of the microevolution mechanism is the fundamental way to grasp the macroscopic properties. The microstructural evolution mechanism, especially at the atomic and nanoscale of molten slag, is reviewed from three aspects: basic oxides, acidic oxides, and amphoteric oxides. The evolution of macroscopic properties is analyzed in depth through the evolution of the atomic structure. Resolution of the macroscopic properties of molten slag by the atomic structure plays a crucial role in the development of fundamental theories of physicochemistry.

7.
Langmuir ; 40(8): 4033-4043, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38356265

ABSTRACT

Sublimation drying is used in the drying process of semiconductor device manufacturing. However, the solidification behavior mechanics of sublimation agents on substrates has not been clarified. Therefore, the properties of solidified films within substrate surfaces can become nonuniform, leading to their collapse. This study aimed to analyze the interface growth behavior during the cooling and solidification of a water/ice system as a basic case and to clarify the dynamic mechanism of the solidification behavior of liquid films on Si substrates. The solidification behavior of a water/ice system on Si substrates was captured on a video at different cooling rates. The recorded video was subjected to a digital image analysis to examine the crystal morphology and quantify the interface growth rate. The least-squares method with kinetic formulas was used to evaluate the feasibility of fitting the temperature variation to the interface growth rate. A visual examination of the morphology of interfacial growth revealed that it can be classified into four morphologies. The proposed kinetic equation describes the experimental results regarding the temperature dependence of the interfacial growth rate. Through image analysis, the interface growth rate of water and ice was quantified, and an evaluation formula was proposed.

8.
J Environ Manage ; 351: 119689, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056329

ABSTRACT

Deep learning techniques have offered innovative and efficient tools for accurate and automated detection of sewer defects by leveraging large-scale sewer data and advanced feature learning algorithms. However, there has been a lack of thorough characterization of the geometric properties of segmented defects, let alone systematically calculate the severity level of sewer defects and quantitatively evaluate their impacts on flood conditions in hydrodynamic models. This study proposed a comprehensive framework and related metrics to accurately and automatically detect, segment, characterize, and evaluate the impacts of sewer defects on flooded nodes and volumes by integrating a DeepLabv3+-based segmentation technique, an automated geometric characterization and severity quantification module, and a GIS and SWMM-based hydrodynamic modeling. The results clearly showed in details where and how much the urban flooding was affected by the different defect types. The segmentation model achieved satisfactory detection performance, with mean pixel accuracy (MPA), mean intersection over union (MIoU), and frequency weighted intersection over union (FWIoU) of 0.99, 0.74 and 0.95, respectively. In terms of severity level quantification, there were 98%, 90%, 90% and 83% of predictions consistent with real conditions for falling off, obstacle, disjoint and leakage. It was shown that the number of surcharging manholes and total flood volume (TFV) were greatly affected by sewer defects, with over 16% increase in TFVs under all investigated rainfall events. The results addressed the impacts of sewer defects on urban flooding and demonstrated the powerful tools provided by the proposed framework for decision-making on sewer defect detection and management.


Subject(s)
Deep Learning , Floods , Hydrodynamics , China , Algorithms
9.
J Mol Model ; 29(12): 372, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955718

ABSTRACT

CONTEXT: An atomistic coke carbon model was constructed to simulate the structural evolution in the gasification and stretching process. The coke model was placed in a box with different CO2/H2O content to investigate the evolution of the atomistic structure of coke during the gasification. It was found that different atmospheric concentrations had different effects on the structure and reaction sites of the coke model. The CO2 molecules tended to dissolve on the surface of coke and disrupt its surface structure, while H2O molecules were more likely to enter the coke model to disrupt the internal structure. For tensile simulation, it was found that CO2 and H2O had different effects on the tensile resistance of the coke model. Controlling the composition content of the reaction gas can effectively influence the tensile strength of the coke model. By revealing the behavior of coke model at the micro scale, it provides a theoretical basis for the industrial coke application process. METHODS: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to conduct the molecular dynamics using the reactive force field (ReaxFF). The atomistic model of coke carbon was constructed using the well-known annealing and quenching method, and its composition is determined according to the element analysis of industrial coke. The structural evolution in the gasification with CO2/H2O and the stretching process were analyzed in detail. Molecular dynamics simulations with reactive force field (ReaxFF-MD) were used to simulate the coke dissolution reaction under CO2/H2O atmosphere and the coke stretching process. The atmosphere ratio was modified to investigate the changes in coke structure under different atmosphere conditions. The Packmol software was used to place gas and coke models into the same box. During the reaction process, the Ovito software was used to perform corresponding visualization analysis on the changes in the atomic structure of coke.

11.
ACS Omega ; 8(40): 37043-37053, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841130

ABSTRACT

In this study, ReaxFF-MD was used to construct a large-molecule model of coke containing 3000 atoms, and the sp2 bond content of the model was controlled by changing the heating and cooling rates. The increase of the sp2 bond content led to a significant difference in the reactivity of coke. The presence of the sp2 bond caused the carbon atoms inside the coke to change into a circular structure, making it more difficult for the gaseous atoms to adsorb on the surface of the coke. It significantly reduced the gasification reaction rate of coke in the CO2 and H2O atmospheres. In the tensile simulation experiment, it was found that the stretching process of coke was mainly divided into three stages: an elastic stretching stage, a plastic stretching stage, and a model fracture stage. During the stretching process, the carbon ring structure would undergo a C-C bond fracture while generating carbon chains to resist stress. The results indicated that the presence of sp2 bonds can effectively reduce the phenomenon of excessive local stress on coke to improve its tensile resistance. The method developed in this paper may provide further ideas and platforms for the research on coke performance.

12.
Nanomaterials (Basel) ; 13(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513062

ABSTRACT

The hydrogen-based direct reduction of iron ores is a disruptive routine used to mitigate the large amount of CO2 emissions produced by the steel industry. The reduction of iron oxides by H2 involves a variety of physicochemical phenomena from macroscopic to atomistic scales. Particularly at the atomistic scale, the underlying mechanisms of the interaction of hydrogen and iron oxides is not yet fully understood. In this study, density functional theory (DFT) was employed to investigate the adsorption behavior of hydrogen atoms and H2 on different crystal FeO surfaces to gain a fundamental understanding of the associated interfacial adsorption mechanisms. It was found that H2 molecules tend to be physically adsorbed on the top site of Fe atoms, while Fe atoms on the FeO surface act as active sites to catalyze H2 dissociation. The dissociated H atoms were found to prefer to be chemically bonded with surface O atoms. These results provide a new insight into the catalytic effect of the studied FeO surfaces, by showing that both Fe (catalytic site) and O (binding site) atoms contribute to the interaction between H2 and FeO surfaces.

13.
Mol Psychiatry ; 28(10): 4151-4162, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37452089

ABSTRACT

BACE1 is the rate-limiting enzyme for ß-amyloid (Aß) production and therefore is considered a prime drug target for treating Alzheimer's disease (AD). Nevertheless, the BACE1 inhibitors failed in clinical trials, even exhibiting cognitive worsening, implying that BACE1 may function in regulating cognition-relevant neural circuits. Here, we found that parvalbumin-positive inhibitory interneurons (PV INs) in hippocampal CA1 express BACE1 at a high level. We designed and developed a mouse strain with conditional knockout of BACE1 in PV neurons. The CA1 fast-spiking PV INs with BACE1 deletion exhibited an enhanced response of postsynaptic N-methyl-D-aspartate (NMDA) receptors to local stimulation on CA1 oriens, with average intrinsic electrical properties and fidelity in synaptic integration. Intriguingly, the BACE1 deletion reorganized the CA1 recurrent inhibitory motif assembled by the heterogeneous pyramidal neurons (PNs) and the adjacent fast-spiking PV INs from the superficial to the deep layer. Moreover, the conditional BACE1 deletion impaired the AMPARs-mediated excitatory transmission of deep CA1 PNs. Further rescue experiments confirmed that these phenotypes require the enzymatic activity of BACE1. Above all, the BACE1 deletion resets the priming of the fear memory extinction. Our findings suggest a neuron-specific working model of BACE1 in regulating learning and memory circuits. The study may provide a potential path of targeting BACE1 and NMDAR together to circumvent cognitive worsening due to a single application of BACE1 inhibitor in AD patients.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Mice , Humans , Animals , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , Hippocampus , Interneurons/physiology , Pyramidal Cells/physiology , Fear , CA1 Region, Hippocampal/physiology
14.
Signal Transduct Target Ther ; 8(1): 169, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095086

ABSTRACT

Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 µM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 µM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.


Subject(s)
COVID-19 , HIV Infections , Pregnancy , Animals , Female , Humans , SARS-CoV-2 , Nelfinavir/pharmacology , Macaca mulatta , Prospective Studies , China , Antiviral Agents/pharmacology
15.
J Mol Model ; 29(4): 116, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973451

ABSTRACT

CONTEXT: A steam-rich environment is a more promising application scenario for future coal-fired processes, while active sites are the key factor that determines the reactivity of carbonaceous fuels. The steam gasification process of carbon surfaces with different numbers of active sites (0, 12, 24, 36) was simulated using reactive molecular dynamics in the present study. The temperature for the decomposition of H2O and the gasification of carbon is determined using temperature-increasing simulation. The decomposition of H2O was influenced by two driving forces, thermodynamics and active sites on the carbon surface, which dominated the different reaction stages, leading to the observed segmentation phenomenon of the H2 production rate. The existence and number of initial active sites have a positive correlation with both two stages of the reaction, greatly reducing the activation energy. Residual OH groups play an important role in the gasification of carbon surfaces. The supply of OH groups through the cleavage of OH bonds in H2O is the rate-limiting step in the carbon gasification reaction. The adsorption preference at carbon defect sites was calculated using density functional theory. Two stable configurations (ether & semiquinone groups) can be formed with O atoms adsorbed on the carbon surface according to the number of active sites. This study will provide further insights into the tuning of active sites for advanced carbonaceous fuels or materials. METHODS: The large-scale atomic/molecule massively parallel simulator (LAMMPS) code combined with the reaction force-field method was used to carry out the ReaxFF molecular dynamics simulation, where the ReaxFF potentials were taken from Castro-Marcano, Weismiller and William. The initial configuration was built using Packmol, and the visualization of the calculation results was realized through Visual Molecular Dynamics (VMD). The timestep was set to 0.1 fs to detect the oxidation process with high precision. PWscf code in QUANTUM ESPRESSO (QE) package, was used to evaluate the relative stability of different possible intermediate configurations and the thermodynamic stability of gasification reactions. The projector augmented wave (PAW) and the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE-GGA) were adopted. Kinetic energy cutoffs of 50 Ry and 600 Ry, and a uniform mesh of 4 × 4 × 1 k-points were used.

16.
Materials (Basel) ; 16(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36769989

ABSTRACT

An in-depth investigation into the adsorption of CO2 on graphene vacancies is essential for the understanding of their applications in various industries. Herein, we report an investigation of the effects of vacancy defects on CO2 gas adsorption behavior on graphene surfaces using the density functional theory. The results show that the formation of vacancies leads to various deformations of local carbon structures, resulting in different adsorption capabilities. Even though most carbon atoms studied can only trigger physisorption, there are also carbon sites that are energetically favored for chemisorption. The general order of the adsorption capabilities of the local carbon atoms is as follows: carbon atoms with dangling bonds > carbon atoms shared by five- and six-membered rings and a vacancy > carbon atoms shared by two six-membered rings and a vacancy. A stronger interaction in the adsorption process generally corresponds to more obvious changes in the partial density of states and a larger amount of transferred charge.

17.
J Leukoc Biol ; 113(3): 334-347, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36801952

ABSTRACT

Recurrent pregnancy loss (RPL) is a significant adverse pregnancy complication. The loss of immune tolerance has been proposed in the pathogenesis of RPL, however, the role of γδ T cells in RPL is still controversial. In this study, the gene expression patterns of circulated and decidual tissue-resident γδ T cells from normal pregnancy donors and patients with RPL were analyzed by SMART-seq. We demonstrate that the transcriptional expression profile of different subsets of γδ T cells in peripheral blood and decidual tissue is strikingly different. Vδ2 γδ T cells, as the major cytotoxic subset, are found to be enriched considerably, and the potential cytotoxicity of this subset is further enhanced in the decidua of RPL patients may be due to detrimental ROS reduction, enhanced metabolic activity, downregulation of immunosuppressive molecules expression in resident γδ T cells. Time-series Expression Miner (STEM) analysis of transcriptome indicates complex changes in gene expression in decidual γδ T cells over time from NP and RPL patients. Taken together, our work identifies high heterogeneity of gene signature in γδ T cells from NP and RPL patients between peripheral blood and decidua, which will be a useful resource for further studies of the critical roles of γδ T cells in RPL.


Subject(s)
Abortion, Habitual , Pregnancy , Female , Humans , Abortion, Habitual/metabolism , Abortion, Habitual/pathology , T-Lymphocytes/metabolism , RNA/metabolism , Decidua/metabolism
18.
Bioresour Technol ; 368: 128338, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403908

ABSTRACT

The lignin hydrothermal processing is an important option but a full understanding of the role played by the water molecules in the depolymerization of lignin is still lacking. In order to clarify the role of the water molecules in the depolymerization of lignin, the evolution of chemical bonds, microstructural changes, and possible mechanisms of product generation were compared during the pyrolysis process under vacuum and water conditions using Reactive Molecular Dynamics Simulation. Compared with vacuum conditions, the role of water changes with temperature, identifying three stages: promotion (1200-1800 K)-inhibition (2100-2400 K)-promotion (2700-3000 K). Also compared with vacuum conditions, hydrothermal processing can promote the cleavage of the ether bonds while inhibiting the destruction of carbocycles. Water molecules promote the depolymerization of lignin into more C4-molecules, thereby generating more combustible gas resources. Based on the research results, the pyrolysis conditions of lignin can be flexibly controlled to obtain solids, liquids or gases.


Subject(s)
Molecular Dynamics Simulation , Pyrolysis , Lignin , Water , Gases
19.
Oncogene ; 42(6): 449-460, 2023 02.
Article in English | MEDLINE | ID: mdl-36513743

ABSTRACT

Current clinical therapies targeting receptor tyrosine kinases including focal adhesion kinase (FAK) have had limited or no effect on esophageal squamous cell carcinoma (ESCC). Unlike esophageal adenocarcinomas, ESCC acquire glucose in excess of their anabolic need. We recently reported that glucose-induced growth factor-independent proliferation requires the phosphorylation of FAKHis58. Here, we confirm His58 phosphorylation in FAK immunoprecipitates of glucose-stimulated, serum-starved ESCC cells using antibodies specific for 3-phosphohistidine and mass spectrometry. We also confirm a role for the histidine kinase, NME1, in glucose-induced FAKpoHis58 and ESCC cell proliferation, correlating with increased levels of NME1 in ESCC tumors versus normal esophageal tissues. Unbiased screening identified glucose-induced retinoblastoma transcriptional corepressor 1 (RB1) binding to FAK, mediated through a "LxCxE" RB1-binding motif in FAK's FERM domain. Importantly, in the absence of growth factors, glucose increased FAK scaffolding of RB1 in the cytoplasm, correlating with increased ESCC G1→S phase transition. Our data strongly suggest that this glucose-mediated mitogenic pathway is novel and represents a unique targetable opportunity in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Focal Adhesion Protein-Tyrosine Kinases , Humans , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Glucose , Intercellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Retinoblastoma Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
20.
Mitochondrial DNA B Resour ; 7(11): 2009-2011, 2022.
Article in English | MEDLINE | ID: mdl-36451965

ABSTRACT

In this study, we used the next-generation sequencing method to obtain mitochondrial DNA (mtDNA) of Numenius minutus Gould 1841 in Scolopacidae, after which we analyzed the structure and phylogeny of the Charadriiformes. The complete mtDNA was 17,047 bp in length, and contained 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and one control region (CR). The gene structure and arrangement of the mitochondrial genome of 64 Charadriiformes species were basically the same as most birds. The reconstructed phylogenetic tree demonstrated that Numenius species were sister groups and monophyletic in Scolopacidae.

SELECTION OF CITATIONS
SEARCH DETAIL