Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
JCO Precis Oncol ; 8: e2300520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102631

ABSTRACT

PURPOSE: Next-generation sequencing (NGS) has enabled the detection of concomitant driver alterations in non-small cell lung cancer (NSCLC). However, the magnitude and clinical relevance of concomitant drivers remain to be explored. METHODS: We profiled concomitant driver alterations of EGFR+ NSCLC by using targeted NGS. The associated genomic and clinical features were analyzed and validated in an independent The Cancer Genome Atlas cohort of patients with EGFR+ NSCLC. RESULTS: Out of the total patient population, 334 patients had EGFR mutations along with concomitant driver mutations, comprising 3.09% of the entire cohort. The most frequent co-occurring mutations with sensitizing EGFR mutations include KRAS at 53.9%, followed by ERBB2 at 24.3%, MET at 16.5%, and BRAF at 3.3%. KRAS mutations in concomitant drivers were frequently hyperexchange mutations (25.6% v 8.2%, P < .001), compared with KRAS single drivers. EGFR/ERBB2 drivers exhibited a higher incidence of ERBB2 amplification (40.7% v 16.5%, P < .001) and p.S310F/Y mutations (44.4% v 4.3%, P < .001) compared with ERBB2 alone. EGFR/MET drivers had a higher frequency of MET amplification (71.4% v 43.3%) than MET single drivers. At the genomic level, the median number of additional concurrent mutations was four, with TSC2 (4%), CD274 (1%), and TP53 (63%) being the most frequently coaltered genes in concomitant driver tumors. Interestingly, clonality analysis indicated that EGFR mutations were more likely to occur as clonal events, whereas the codrivers were more often subclonal. Patients with concomitant drivers or with concomitant MET amplification exhibited worse prognosis. CONCLUSION: These findings might aid in the selection of effective therapeutic regimens and facilitate the development of combination therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Mutation , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , ErbB Receptors/genetics , Male , Female , Middle Aged , Aged , Adult , Aged, 80 and over , High-Throughput Nucleotide Sequencing
2.
Mol Biomed ; 5(1): 33, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155349

ABSTRACT

Transcription, RNA splicing, RNA translation, and post-translational protein modification are fundamental processes of gene expression. Epigenetic modifications, such as DNA methylation, RNA modifications, and protein modifications, play a crucial role in regulating gene expression. The methyltransferase-like protein (METTL) family, a constituent of the 7-ß-strand (7BS) methyltransferase subfamily, is broadly distributed across the cell nucleus, cytoplasm, and mitochondria. Members of the METTL family, through their S-adenosyl methionine (SAM) binding domain, can transfer methyl groups to DNA, RNA, or proteins, thereby impacting processes such as DNA replication, transcription, and mRNA translation, to participate in the maintenance of normal function or promote disease development. This review primarily examines the involvement of the METTL family in normal cell differentiation, the maintenance of mitochondrial function, and its association with tumor formation, the nervous system, and cardiovascular diseases. Notably, the METTL family is intricately linked to cellular translation, particularly in its regulation of translation factors. Members represent important molecules in disease development processes and are associated with patient immunity and tolerance to radiotherapy and chemotherapy. Moreover, future research directions could include the development of drugs or antibodies targeting its structural domains, and utilizing nanomaterials to carry miRNA corresponding to METTL family mRNA. Additionally, the precise mechanisms underlying the interactions between the METTL family and cellular translation factors remain to be clarified.


Subject(s)
Methyltransferases , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Neoplasms/genetics , Neoplasms/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Cardiovascular Diseases/genetics , Epigenesis, Genetic
3.
Biomed Pharmacother ; 178: 117253, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111084

ABSTRACT

Malignant ascites effusion (MAE) is a common complication of advanced malignant tumors with limited treatments. Euphorbia lathyris (EL) has a long history of application in patients with edema and ascites. Herein, we reported for the first time a mode in which EL and EL Pulveratum (PEL) spontaneously formed natural microemulsions (ELM and PELM) without the addition of any carriers and excipients, and found that the protein and phospholipid contained in them encapsulated fatty oil and diterpenoid esters through non-covalent interactions. The denaturation and degradation of protein in PELM resulted in stronger binding of diterpenoid esters to the hydrophobic region of protein, which facilitated the sustained and slow release of diterpenoid esters and improved their bioavailability in vivo, thereby retaining the efficacy of preventing MAE while alleviating the irritation of intestinal mucosa. The mechanism by which PELM retained efficacy might be related to increased feces moisture and urine volume, and decreased expression of AVPR2, cAMP, PKA and AQP3 in MAE mice. And its mechanism of reducing intestinal mucosal irritation was related to decreased cell apoptosis, amelioration of oxidative stress, elevation of mitochondrial membrane potential, and up-regulation of Occludin and Claudin-1 expression in IEC-6 cells. This nano-adjuvant-free natural microemulsions may be a promising therapeutic strategy in the field of phytochemistry for promoting the application of natural and efficient nano-aggregates spontaneously formed by medicinal plants in MAE, and provide a new perspective for advancing the development of the fusion of Chinese herbal medicine and nanomedicine and its clinical translation.


Subject(s)
Emulsions , Euphorbia , Intestinal Mucosa , Euphorbia/chemistry , Animals , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Ascites/drug therapy , Ascites/pathology , Male , Apoptosis/drug effects , Plant Extracts/pharmacology , Oxidative Stress/drug effects
4.
J Integr Plant Biol ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185936

ABSTRACT

Anchorene, identified as an endogenous bioactive carotenoid-derived dialdehyde and diapocarotenoid, affects root development by modulating auxin homeostasis. However, the precise interaction between anchorene and auxin, as well as the mechanisms by which anchorene modulates auxin levels, remain largely elusive. In this study, we conducted a comparative analysis of anchorene's bioactivities alongside auxin and observed that anchorene induces multifaceted auxin-like effects. Through genetic and pharmacological examinations, we revealed that anchorene's auxin-like activities depend on the indole-3-pyruvate-dependent auxin biosynthesis pathway, as well as the auxin inactivation pathway mediated by Group II Gretchen Hagen 3 (GH3) proteins that mainly facilitate the conjugation of indole-3-acetic acid (IAA) to amino acids, leading to the formation of inactivated storage forms. Our measurements indicated that anchorene treatment elevates IAA levels while reducing the quantities of inactivated IAA-amino acid conjugates and oxIAA. RNA sequencing further revealed that anchorene triggers the expression of numerous auxin-responsive genes in a manner reliant on Group II GH3s. Additionally, our in vitro enzymatic assays and biolayer interferometry (BLI) assay demonstrated anchorene's robust suppression of GH3.17-mediated IAA conjugation with glutamate. Collectively, our findings highlight the significant role of carotenoid-derived metabolite anchorene in modulating auxin homeostasis, primarily through the repression of GH3-mediated IAA conjugation and inactivation pathways, offering novel insights into the regulatory mechanisms of plant bioactive apocarotenoids.

5.
Diagn Pathol ; 19(1): 93, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970069

ABSTRACT

PURPOSE: Cutaneous metastasis (CM) accounts for 5-30% of patients with breast cancer (BC) and presents unfavorable response to treatment and poor prognosis. A better understanding of the molecular alterations involved in metastasis is essential, which would help identify diagnostic and efficacy biomarkers for CM. MATERIALS: We retrospectively reviewed a total of 13 patients with histological or cytological diagnosis of breast cancer and CM. Clinical information was extracted from the medical records. The mutational landscape of matched primary tumors with their lymph nodes or CM tissues were analyzed using next-generation sequencing (NGS) of 425 cancer-relevant genes. All tissues were also analyzed by immunohistochemistry (IHC). The association of prognosis with various clinical and molecular factors was also evaluated. RESULTS: More than half of the patients were Ki67 low (< 50%, 53.7%). Most patients (12, 92.3%) had other metastasis sites other than skin. The median time from diagnosis to the presentation of CM (T1) was 15 months (range: 0-94 months) and the median time from CM to death (T2) was 13 months (range 1-78). The most frequently altered genes across the three types of tissues were TP53 (69.6%, 16/23), PIK3CA (34.8%, 8/23), and MYC (26.1%). The number of alterations in CM tends to be higher than in primary tumors (median 8 vs. 6, P = 0.077). Copy number loss in STK11, copy number gain in FGFR4, TERT, AR, FLT4 and VEGFA and mutations in ATRX, SRC, AMER1 and RAD51C were significantly enriched in CM (all P < 0.05). Ki67 high group (> 50%) showed significantly shorter T1 than the Ki67 low group (≤ 50%) (median 12.5 vs. 50.0 months, P = 0.036). TP53, PIK3CA mutations, and TERT amplification group were associated with inferior T2 (median 11 vs. 36 months, P = 0.065; 8 vs. 36 months, P = 0.013, 7 vs. 36 months, P = 0.003, respectively). All p values were not adjusted. CONCLUSION: We compared the genomic features of primary breast cancer tissues with their corresponding CM tissues and discussed potential genes and pathways that may contribute to the skin metastasis of advanced breast cancers patients. TP53, PIK3CA mutant, and TERT amplification may serve as biomarkers for poor prognosis for CM patients.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Mutation , Skin Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/mortality , Middle Aged , Aged , Retrospective Studies , Prognosis , Biomarkers, Tumor/genetics , Adult , High-Throughput Nucleotide Sequencing , Aged, 80 and over , Immunohistochemistry
6.
Int J Gen Med ; 17: 3239-3255, 2024.
Article in English | MEDLINE | ID: mdl-39070220

ABSTRACT

Background: Myocardial infarction (MI) is a chronic cardiovascular disease. This study aims to discern potentially angiogenesis- and epithelial mesenchymal transition (EMT)-related genes as biomarkers for MI diagnosis through bioinformatics. Methods: All datasets and angiogenesis- and EMT-related genes were collected from the public database. The differentially expressed genes (DEGs) of MI and MI-related genes were acquired. DEGs, MI-related genes, and angiogenesis- and EMT-related genes were intersected to obtain hub genes. Functional enrichment, immune microenvironment, and transcription factors (TFs)-hub genes regulatory network analysis were performed. The diagnostic markers and models were developed and validated. Drug prediction and molecular docking were performed. Finally, diagnostic markers expressions were validated using RT-qPCR. Results: A total of 224 angiogenesis- and EMT-related genes, 2,897 DEGs, 1,217 MI-related genes, and 9 hub genes were acquired. The immune infiltration levels of plasma cells, T cells CD4 memory activated, monocytes, macrophages M0, mast cells resting, and neutrophils were higher in patients with MI. LRPAP1, COLGALT1, QSOX1, THBD, VCAN, PLOD1, and PLAUR as the diagnostic markers were identified and used to construct diagnostic models, which can distinguish MI from controls well. Then, 9 drugs were screened, and the binding energies ranged from -7.08 to -5.21 kcal/mol. RT-qPCR results showed that the expression of LRPAP1, PLAUR, and PLOD1 was significantly increased in the MI group. Conclusion: The 7 diagnostic markers may play potential roles in MI and could contribute to improved future diagnostics.

7.
Hepatol Int ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017915

ABSTRACT

BACKGROUND: Evaluation of liver fibrosis played a monumental role in the diagnosis and monitoring of chronic hepatitis B (CHB). We aimed to explore the value of serum N-glycan markers in liver fibrosis. METHODS: This multi-center (33 hospitals) study recruited 760 treatment-naïve CHB patients who underwent liver biopsy. Serum N-glycan markers were analyzed by DNA sequencer-assisted fluorophore-assisted with capillary electrophoresis (DSA-FACE) technology. First, we explore the relationship between 12 serum N-glycan markers and the fibrosis stage. Then, we developed a Px score for diagnosing significant fibrosis using the LASSO regression. Next, we compared the diagnostic performances between Px, LSM, APRI, and FIB-4. Finally, we explored the relationships between glycosyltransferase gene and liver fibrosis with RNA-transcriptome sequencing. RESULTS: We included 622 CHB participants: male-dominated (69.6%); median age 42.0 (IQR 34.0-50.0); 287 with normal ALT; 73.0% with significant fibrosis. P5(NA2), P8(NA3), and P10(NA4) were opposite to the degree of fibrosis, while other profiles (except for P0[NGA2]) increased with the degree of fibrosis. Seven profiles (P1[NGA2F], P2[NGA2FB], P3[NG1A2F], P4[NG1A2F], P7[NA2FB], P8[NA3], and P9[NA3Fb]) were selected into Px score. Px score was associated with an increased risk of significant fibrosis (for per Px score increase, the risk of significant fibrosis was increased by 3.54 times (OR = 4.54 [2.63-7.82]) in the fully-adjusted generalized linear model. p for trend was <0.001. The diagnostic performance of the Px score was superior to others. Glycosyltransferase genes were overexpressed in liver fibrosis, and glycosylation and glycosyltransferase-related pathways were significantly enriched. CONCLUSIONS: Serum N-glycan markers were positively correlated with liver fibrosis. Px score had good performance in distinguishing significant fibrosis.

8.
Nanoscale ; 16(31): 14775-14783, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38976287

ABSTRACT

The quest for materials with non-collinear magnetic structures has been driven by their unique properties and potential applications in advanced spintronics and data storage technologies. In this study, we investigate the induction of a non-collinear conical state in BaFe12O19 (M-type) nanocrystal fibers through the substitution of Fe3+ ions with diamagnetic Sc3+ ions. This substitution introduces an additional parameter for tuning the magnetic structure and allows precise control over the substitution amount. We demonstrate that the non-collinear conical state remains stable within a temperature range of 125 K to 325 K and can be finely adjusted by varying the Sc3+ substitution amount. The selective occupancy of Sc3+ ions at the 2a, 4f2, and 2b sites within the M-type ferrite lattice weakens the super-exchange interaction between Fe1, Fe2, and Fe5 ions. This weakening disrupts interactions between different blocks S/R (R*/S*) and stabilizes the conical state. These findings highlight a significant approach to modulating non-collinear magnetic structures in hexagonal ferrites, with implications for both fundamental research and practical applications in the development of novel magnetic materials.

9.
Braz J Otorhinolaryngol ; 90(6): 101472, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39079456

ABSTRACT

OBJECTIVES: Allergic diseases and Meniere's disease found to have a possible link in observational study. However, the potential causal relationship between the two is unclear. Therefore, we aimed to explore the causal relationship between allergic diseases and Meniere's disease using a new data analysis technique called bidirectional Mendelian randomization study. METHOD: Summary-level statistics for Meniere's disease and three allergic diseases (asthma, allergic rhinitis, eczema/dermatitis) were obtained from large-scale genome-wide association studies. The inverse variance weighted method was used as the primary measure, supplemented by MR-Egger regression and the weighted median method. To ensure the reliability of the conclusions, Cochran's Q, MR-Egger intercept, MR-PRESSO test, leave-one-out test, and MR Steiger test were used. RESULTS: Inverse-variance weighted method showed asthma (p = 0.008, OR = 3.908, 95% CI 1.424-10.724, adjust_p = 0.024), allergic rhinitis (p = 0.026, OR = 24.714, 95% CI 1.479-412.827, adjust_p = 0.026) and eczema/dermatitis (p = 0.019, OR = 3725.954, 95% CI 3.795 to 3,658,399.580, adjust_p = 0.029) all had a significant effect on Meniere's disease. Reverse Mendelian randomization studies have shown that Meniere's disease does not increase the risk of three allergic diseases. Sensitivity analysis showed no horizontal pleiotropy and heterogeneity for each trait. CONCLUSION: Our Mendelian randomization analysis supports a positive causal relationship between three allergic diseases (asthma, allergic rhinitis, eczema/dermatitis) and Meniere's disease. This suggests that physicians should pay more attention to the Meniere's patient's allergy history and consider allergy avoidance as part of their treatment plan. LEVEL OF EVIDENCE: Mendelian Randomized (MR) studies are second only to randomized controlled trials in terms of the level of evidence.

10.
J Environ Sci Health B ; 59(7): 425-436, 2024.
Article in English | MEDLINE | ID: mdl-38847499

ABSTRACT

Sulfonamide antibiotics (SAs) are widely used antimicrobial agents in livestock and aquaculture, and most of them entering the animal's body will be released into the environment as prodrugs or metabolites, which ultimately affect human health through the food chain. Both acid deposition and salinization of soil may have an impact on the migration and degradation of antibiotics. Sulfamethazine (SM2), a frequently detected compound in agricultural soils, has a migration and transformation process in the environment that is closely dependent on environmental pH. Nevertheless, scarcely any studies have been conducted on the effect of soil pH changes on the environmental behavior of sulfamethazine. We analyzed the migration and degradation mechanisms of SM2 using simulation experiments and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) techniques. The results showed that acidic conditions limited the vertical migration of sulfadimidine, and SM2 underwent different reaction processes under different pH conditions, including S-C bond breaking, S-N bond hydrolysis, demethylation, six-membered heterocyclic addition, methyl hydroxylation and ring opening. The study of the migration pattern and degradation mechanism of SM2 under different pH conditions can provide a solid theoretical basis for assessing the pollution risk of sulfamethazine degradation products under acid rain and saline conditions, and provide a guideline for remediation of antibiotic contamination, so as to better prevent, control and protect groundwater resources.


Subject(s)
Anti-Infective Agents , Hydrogen-Ion Concentration , Soil Pollutants , Sulfamethazine , Sulfamethazine/analysis , Sulfamethazine/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Anti-Infective Agents/analysis , Anti-Infective Agents/chemistry , Chromatography, Liquid , Salinity
11.
Synth Syst Biotechnol ; 9(4): 733-741, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38911060

ABSTRACT

Collagen XVII (COL17) is a transmembrane protein that mediates skin homeostasis. Due to expression of full length collagen was hard to achieve in microorganisms, arising the needs for selection of collagen fragments with desired functions for microbial biosynthesis. Here, COL17 fragments (27-33 amino acids) were extracted and replicated 16 times for recombinant expression in Escherichia coli. Five variants were soluble expressed, with the highest yield of 223 mg/L. The fusion tag was removed for biochemical and biophysical characterization. Circular dichroism results suggested one variant (sample-1707) with a triple-helix structure at >37 °C. Sample-1707 can assemble into nanofiber (width, 5.6 nm) and form hydrogel at 3 mg/mL. Sample-1707 was shown to induce blood clotting and promote osteoblast differentiation. Furthermore, sample-1707 exhibited high capacity to induce mouse hair follicle stem cells differentiation and osteoblast migration, demonstrating a high capacity to induce skin cell regeneration and promote wound healing. A strong hydrogel was prepared from a chitosan and sample-1707 complex with a swelling rate of >30 % higher than simply using chitosan. Fed-batch fermentation of sample-1707 with a 5-L bioreactor obtained a yield of 600 mg/L. These results support the large-scale production of sample-1707 as a biomaterial for use in the skin care industry.

12.
Anal Chim Acta ; 1314: 342779, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876518

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease in the world and poses a huge challenge to global healthcare. Early and accurate detection of amyloid-ß (1-42) (Aß42), a key biomarker of AD, is crucial for effective diagnosis and intervention of AD. Specific or overexpressed proteins on extracellular vesicles (EVs) describe a close correlation with the occurrence and development of diseases. EVs are a very promising non-invasive biomarker for the diagnosis of AD and other diseases. As a sensitive, simple and rapid analytical method, fluorescence resonance energy transfer (FRET) has been widely applied in the detection of EVs. Herein, we developed a dual labelling strategy for simultaneously detecting EV membrane proteins of Aß42 and CD63 based on FRET pair consisting of Au nanoclusters (AuNCs) and polydopamine nanospheres (PDANSs). The constructed nanoprobe, termed EVMPFAP assay, could specifically measure the Aß42 and CD63 on EVs with excellent sensitivity, high specificity and satisfactory accuracy. The limit of detection of EVMPFAP assay was 1.4 × 103 particles mL-1 and the linear range was from 104 to 108 particles mL-1. EVMPFAP assay was successfully used to analyze plasma EVs to distinguish AD and healthy mice. We expect that EVMPFAP assay can be routinely applied for early diagnosis and development-monitoring of AD, thus facilitating the fight against AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Extracellular Vesicles , Fluorescence Resonance Energy Transfer , Gold , Metal Nanoparticles , Tetraspanin 30 , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Extracellular Vesicles/chemistry , Animals , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/blood , Mice , Humans , Tetraspanin 30/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Peptide Fragments/analysis , Peptide Fragments/blood , Peptide Fragments/chemistry , Polymers/chemistry , Indoles/chemistry , Limit of Detection
13.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791522

ABSTRACT

The role of lncRNA and circRNA in wheat grain development is still unclear. The objectives of this study were to characterize the lncRNA and circRNA in the wheat grain development and to construct the interaction network among lncRNA, circRNA, and their target miRNA to propose a lncRNA-circRNA-miRNA module related to wheat grain development. Full transcriptome sequencing on two wheat varieties (Annong 0942 and Anke 2005) with significant differences in 1000-grain weight at 10 d (days after pollination), 20 d, and 30 d of grain development were conducted. We detected 650, 736, and 609 differentially expressed lncRNA genes, and 769, 1054, and 1062 differentially expressed circRNA genes in the grains of 10 days, 20 days and 30 days after pollination between Annong 0942 and Anke 2005, respectively. An analysis of the lncRNA-miRNA and circRNA-miRNA targeting networks reveals that circRNAs exhibit a more complex and extensive interaction network in the development of cereal grains and the formation of grain shape. Central to these interactions are tae-miR1177, tae-miR1128, and tae-miR1130b-3p. In contrast, lncRNA genes only form a singular network centered around tae-miR1133 and tae-miR5175-5p when comparing between varieties. Further analysis is conducted on the underlying genes of all target miRNAs, we identified TaNF-YB1 targeted by tae-miR1122a and TaTGW-7B targeted by miR1130a as two pivotal regulatory genes in the development of wheat grains. The quantitative real-time PCR (qRT-PCR) and dual-luciferase reporter assays confirmed the target regulatory relationships between miR1130a-TaTGW-7B and miR1122a-TaNF-YB1. We propose a network of circRNA and miRNA-mediated gene regulation in the development of wheat grains.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , MicroRNAs , RNA, Circular , RNA, Long Noncoding , Triticum , Triticum/genetics , Triticum/growth & development , RNA, Long Noncoding/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , Edible Grain/genetics , Edible Grain/growth & development , Gene Regulatory Networks , RNA, Plant/genetics , Gene Expression Profiling
14.
J Phys Condens Matter ; 36(34)2024 May 30.
Article in English | MEDLINE | ID: mdl-38759671

ABSTRACT

The critical behavior of the van der Waals ferromagnet Fe3.8GaTe2was systematically studied through measurements of isothermal magnetization, with the magnetic field applied along thec-axis. Fe3.8GaTe2undergoes a non-continuous paramagnetic to ferromagnetic phase transition at the Curie temperatureTc∼ 355 K. A comprehensive analysis of isotherms aroundTcutilizing the modified Arrott diagram, the Kouvel-Fisher method, the Widom scaling law, and the critical isotherm analysis yielded the critical exponent ofß= 0.411,γ= 1.246, andδ= 3.99. These critical exponents are found to be self-consistent and align well with the scaling equation at high magnetic fields, underscoring the reliability and intrinsic nature of these parameters. However, the low-field data deviates from the scaling relation, exhibiting a vertical trend whenT

15.
Aging (Albany NY) ; 16(10): 8645-8656, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38752883

ABSTRACT

Mangiferin, a naturally occurring potent glucosylxanthone, is mainly isolated from the Mangifera indica plant and shows potential pharmacological properties, including anti-bacterial, anti-inflammation, and antioxidant in sepsis-induced lung and kidney injury. However, there was a puzzle as to whether mangiferin had a protective effect on sepsis-associated encephalopathy. To answer this question, we established an in vitro cell model of sepsis-associated encephalopathy and investigated the neuroprotective effects of mangiferin in primary cultured hippocampal neurons challenged with lipopolysaccharide (LPS). Neurons treated with 20 µmol/L or 40 µmol/L mangiferin for 48 h can significantly reverse cell injuries induced by LPS treatment, including improved cell viability, decreased inflammatory cytokines secretion, relief of microtubule-associated light chain 3 expression levels and several autophagosomes, as well as attenuated cell apoptosis. Furthermore, mangiferin eliminated pathogenic proteins and elevated neuroprotective factors at both the mRNA and protein levels, showing strong neuroprotective effects of mangiferin, including anti-inflammatory, anti-autophagy, and anti-apoptotic effects on neurons in vitro.


Subject(s)
Apoptosis , Hippocampus , Lipopolysaccharides , Neurons , Neuroprotective Agents , Xanthones , Xanthones/pharmacology , Animals , Neurons/drug effects , Neurons/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neuroprotective Agents/pharmacology , Cells, Cultured , Apoptosis/drug effects , Cell Survival/drug effects , Autophagy/drug effects , Rats , Cytokines/metabolism
16.
Foods ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672864

ABSTRACT

Sanghuangporus sanghuang is a rare fungus growing on mulberry trees that has immense medicinal value. This study aimed to optimize the liquid-fermentation-media formulation and culture conditions for large-scale culturing of S. sanghuang by performing one-way testing and response surface methodology. The antioxidant and anticancer activities of the extracellular polysaccharides from S. sanghuang were also analyzed. The optimal formulation and growth conditions for S. sanghuang were as follows: glucose, 30.2 ± 0.37 g/L; yeast extract, 14.60 ± 0.05 g/L; dandelion powder, 1.24 ± 0.01 g/L; shaker speed, 150 r/min; and temperature, 25 °C. We obtained 13.99 ± 0.42 g/L of mycelium biomass by culturing S. sanghuang for 15 days with the optimized formulation. This was 2-fold higher than the mycelial mass obtained with the sub-optimal formulation. The extracellular fungal polysaccharides showed significant antioxidant activity against ABTS and DPPH free radicals, and significantly reduced the in vitro growth and survival of several cancer cell lines. The anticancer activity of the extracellular fungal polysaccharides was significantly higher in the human glioma cells than in other cancer cell lines. In summary, this study optimized the liquid media formulation and conditions for the large-scale culturing of S. sanghuang. Furthermore, the extracellular polysaccharides from S. sanghuang showed significant antioxidant and anticancer activities.

17.
18.
World J Gastrointest Oncol ; 16(3): 659-669, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38577461

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of less than 10%, owing to its late-stage diagnosis. Early detection of pancreatic cancer (PC) can significantly increase survival rates. AIM: To identify the serum biomarker signatures associated with early-stage PDAC by serum N-glycan analysis. METHODS: An extensive patient cohort was used to determine a biomarker signature, including patients with PDAC that was well-defined at an early stage (stages I and II). The biomarker signature was derived from a case-control study using a case-cohort design consisting of 29 patients with stage I, 22 with stage II, 4 with stage III, 16 with stage IV PDAC, and 88 controls. We used multiparametric analysis to identify early-stage PDAC N-glycan signatures and developed an N-glycan signature-based diagnosis model called the "Glyco-model". RESULTS: The biomarker signature was created to discriminate samples derived from patients with PC from those of controls, with a receiver operating characteristic area under the curve of 0.86. In addition, the biomarker signature combined with cancer antigen 19-9 could discriminate patients with PDAC from controls, with a receiver operating characteristic area under the curve of 0.919. Glyco-model demonstrated favorable diagnostic performance in all stages of PC. The diagnostic sensitivity for stage I PDAC was 89.66%. CONCLUSION: In a prospective validation study, this serum biomarker signature may offer a viable method for detecting early-stage PDAC.

19.
Adv Sci (Weinh) ; 11(20): e2400916, 2024 May.
Article in English | MEDLINE | ID: mdl-38520733

ABSTRACT

The rigid hull encasing Tartary buckwheat seeds necessitates a laborious dehulling process before flour milling, resulting in considerable nutrient loss. Investigation of lignin composition is pivotal in understanding the structural properties of tartary buckwheat seeds hulls, as lignin is key determinant of rigidity in plant cell walls, thus directly impacting the dehulling process. Here, the lignin composition of seed hulls from 274 Tartary buckwheat accessions is analyzed, unveiling a unique lignin chemotype primarily consisting of G lignin, a common feature in gymnosperms. Furthermore, the hardness of the seed hull showed a strong negative correlation with the S lignin content. Genome-wide detection of selective sweeps uncovered that genes governing the biosynthesis of S lignin, specifically two caffeic acid O-methyltransferases (COMTs) and one ferulate 5-hydroxylases, are selected during domestication. This likely contributed to the increased S lignin content and decreased hardness of seed hulls from more domesticated varieties. Genome-wide association studies identified robust associations between FtCOMT1 and the accumulation of S lignin in seed hull. Transgenic Arabidopsis comt1 plants expressing FtCOMT1 successfully reinstated S lignin content, confirming its conserved function across plant species. These findings provide valuable metabolic and genetic insights for the potential redesign of Tartary buckwheat seed hulls.


Subject(s)
Fagopyrum , Lignin , Seeds , Lignin/metabolism , Lignin/genetics , Fagopyrum/genetics , Fagopyrum/metabolism , Seeds/genetics , Seeds/metabolism , Methyltransferases
20.
Inflammation ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429403

ABSTRACT

Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.

SELECTION OF CITATIONS
SEARCH DETAIL