Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Phys Chem Chem Phys ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957898

ABSTRACT

Uranium is considered as a very important nuclear energy material because of the huge amount of energy it releases. As the main product of the spontaneous decay of uranium, it is difficult for helium to react with uranium because of its chemical inertness. Therefore, bubbles will be formed inside uranium, which could greatly reduce the performance of uranium or cause safety problems. Additionally, nuclear materials are usually operated in an environment of high-temperature and high-pressure, so it is necessary to figure out the exact state of helium inside uranium under extreme conditions. Here, we explored the structural stability of the U-He system under high pressure and high temperature by using density functional theory calculations. Two metastable phases are found between 50 and 400 GPa: U4He with space group Fmmm and U6He with space group P1̄. Both are metallic and adopt layered structures. Electron localization function calculation combined with charge density difference analysis indicates that there are covalent bonds between U and U atoms in both Fmmm-U4He and P1̄-U6He. Regarding the elastic modulus of α-U, the addition of helium has certain influence on the mechanical properties of uranium. Besides, first-principles molecular dynamics simulations were carried out to study the dynamical behavior of Fmmm-U4He and P1̄-U6He at high-temperature. It was found that Fmmm-U4He and P1̄-U6He undergo one-dimensional superionic phase transitions at 150 GPa. Our study revealed the exotic structure of U-He compounds beyond the formation of bubbles under high-pressure and high-temperature, which might be relevant to the performance and safety issues of nuclear materials under extreme conditions.

2.
Front Pharmacol ; 15: 1371890, 2024.
Article in English | MEDLINE | ID: mdl-38948467

ABSTRACT

Introduction: Rhubarb is a frequently used and beneficial traditional Chinese medicine. Wild resources of these plants are constantly being depleted, meaning that rhubarb products have been subjected to an unparalleled level of adulteration. Consequentially, reliable technology is urgently required to verify the authenticity of rhubarb raw materials and commercial botanical drugs. Methods: In this study, the barcode-DNA high-resolution melting (Bar-HRM) method was applied to characterize 63 rhubarb samples (five Polygonaceae species: Rheum tanguticum, Rh. palmatum, Rh. officinale, Rumex japonicus and Ru. sp.) and distinguish the rhubarb contents of 24 traditional Chinese patent medicine (TCPM) samples. Three markers, namely ITS2, rbcL and psbA-trnH, were tested to assess the candidate DNA barcodes for their effectiveness in distinguishing rhubarb from its adulterants. A segment from ITS2 was selected as the most suitable mini-barcode to identify the botanical drug rhubarb in TCPMs. Then, rhubarbs and TCPM samples were subjected to HRM analysis based on the ITS2 barcode. Results: Among the tested barcoding loci, ITS2 displayed abundant sites of variation and was effective in identifying Polygonaceae species and their botanical origins. HRM analysis based on the ITS2 mini-barcode region successfully distinguished the authenticity of five Polygonaceae species and eight batches of TCPMs. Of the 18 TCPM samples, 66.7 % (12 samples) were identified as containing Rh. tanguticum or Rh. officinale. However, 33.3 % were shown to consist of adulterants. Conclusions: These results demonstrated that DNA barcoding combined with HRM is a specific, suitable and powerful approach for identifying rhubarb species and TCPMs, which is crucial to guaranteeing the security of medicinal plants being traded internationally.

3.
Talanta ; 278: 126475, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38944939

ABSTRACT

Fibroblast activation protein-α (FAP) plays a crucial role in various physiological and pathological processes, making it a key target for cancer diagnostics and therapeutics. However, in vivo detection of FAP activity with fluorogenic probes remains challenging due to the rapid diffusion and clearance of fluorescent products from the target. Herein, we developed a self-immobilizing near-infrared (NIR) fluorogenic probe, Hcy-CF2H-PG, by introducing a difluoromethyl group to FAP substrate-caged NIR fluorophore. Upon selective activation by FAP, the fluorescence of Hcy-CF2H-PG was triggered, followed by the covalent labelling of FAP. Hcy-CF2H-PG demonstrated significantly improved sensitivity, selectivity, and long-lasting labelling capacity for FAP both in vitro and in vivo, compared to that of non-immobilized probes. This represents a noteworthy advancement in FAP detection and cancer diagnostics within complex physiological systems.

4.
Sci Total Environ ; 945: 174001, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38879040

ABSTRACT

Micro- and nano-plastics (MNPs) in the soil can impact the microbial diversity within rhizospheres and induce modifications in plants' morphological, physiological, and biochemical parameters. However, a significant knowledge gap still needs to be addressed regarding the specific effects of varying particle sizes and concentrations on the comprehensive interplay among soil dynamics, root exudation, and the overall plant system. In this sense, different omics techniques were employed to clarify the mechanisms of the action exerted by four different particle sizes of polyethylene plastics considering four different concentrations on the soil-roots exudates-plant system was studied using lettuce (Lactuca sativa L. var. capitata) as a model plant. The impact of MNPs was investigated using a multi-omics integrated approach, focusing on the tripartite interaction between the root metabolic process, exudation pattern, and rhizosphere microbial modulation. Our results showed that particle size and their concentrations significantly modulated the soil-roots exudates-plant system. Untargeted metabolomics highlighted that fatty acids, amino acids, and hormone biosynthesis pathways were significantly affected by MNPs. Additionally, they were associated with the reduction of rhizosphere bacterial α-diversity, following a size-dependent trend for specific taxa. The omics data integration highlighted a correlation between Pseudomonadata and Actinomycetota phyla and Bacillaceae family (Peribacillus simplex) and the exudation of flavonoids, phenolic acids, and lignans in lettuce exposed to increasing sizes of MNPs. This study provides a novel insight into the potential effects of different particle sizes and concentrations of MNPs on the soil-plant continuum, providing evidence about size- and concentration-dependent effects, suggesting the need for further investigation focused on medium- to long-term exposure.


Subject(s)
Lactuca , Metabolome , Microplastics , Plant Roots , Rhizosphere , Soil Pollutants , Lactuca/microbiology , Plant Roots/microbiology , Soil Pollutants/metabolism , Microplastics/toxicity , Soil Microbiology , Microbiota/drug effects , Particle Size
5.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858353

ABSTRACT

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Stromal Cells , Uterus , Female , Animals , Uterus/metabolism , Stromal Cells/metabolism , Mice , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Interferons/metabolism , Interferons/genetics , Endogenous Retroviruses/genetics , Apoptosis/genetics , Mice, Inbred C57BL , Cell Death/genetics , Necroptosis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Single-Cell Analysis , Mice, Knockout , Cell Differentiation/genetics
6.
Noise Health ; 26(121): 186-191, 2024.
Article in English | MEDLINE | ID: mdl-38904821

ABSTRACT

OBJECTIVE: This study aims to investigate the effects of nighttime noise management in intensive care units (ICU) on hormone levels and sleep quality in conscious patients. METHODS: From March 2020 to March 2021, the routine noise management for conscious patients was implemented in the ICU of Wenzhou TCM Hospital of Zhejiang Chinese Medical University. During this time, 86 patients were selected as the study subjects; five patients who did not meet the inclusion criteria were excluded, and 81 patients were included in the reference group. From April 2021 to April 2022, nighttime noise management for conscious patients was conducted, during which 93 patients were selected as the research subjects; six patients who did not meet the inclusion criteria were excluded, and 87 patients were included in the observation group. The hormone indicators, Pittsburgh Sleep Quality Index (PSQI) scores, and Symptom Checklist-90 (SCL-90) scores were collected and compared. RESULTS: After management, the observation group had significantly lower noise level and hormone indicators (P < 0.05), significantly lower PSQI score (P < 0.001) and significantly lower SCL-90 score than the reference group (P < 0.01). CONCLUSION: Nighttime noise in the ICU has an adverse effect on conscious patients. Nighttime noise management improves the hormone levels and sleep quality of ICU patients.


Subject(s)
Intensive Care Units , Noise , Sleep Quality , Humans , Male , Noise/adverse effects , Female , Middle Aged , Adult , Hormones/blood , Aged , China , Consciousness
7.
BMC Cancer ; 24(1): 573, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724951

ABSTRACT

BACKGROUND: Microsatellite instability-high (MSI-H) has emerged as a significant biological characteristic of colorectal cancer (CRC). Studies reported that MSI-H CRC generally had a better prognosis than microsatellite stable (MSS)/microsatellite instability-low (MSI-L) CRC, but some MSI-H CRC patients exhibited distinctive molecular characteristics and experienced a less favorable prognosis. In this study, our objective was to explore the metabolic transcript-related subtypes of MSI-H CRC and identify a biomarker for predicting survival outcomes. METHODS: Single-cell RNA sequencing (scRNA-seq) data of MSI-H CRC patients were obtained from the Gene Expression Omnibus (GEO) database. By utilizing the copy number variation (CNV) score, a malignant cell subpopulation was identified at the single-cell level. The metabolic landscape of various cell types was examined using metabolic pathway gene sets. Subsequently, functional experiments were conducted to investigate the biological significance of the hub gene in MSI-H CRC. Finally, the predictive potential of the hub gene was assessed using a nomogram. RESULTS: This study revealed a malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. MSI-H CRC was clustered into two subtypes based on the expression profiles of metabolism-related genes, and ENO2 was identified as a hub gene. Functional experiments with ENO2 knockdown and overexpression demonstrated its role in promoting CRC cell migration, invasion, glycolysis, and epithelial-mesenchymal transition (EMT) in vitro. High expression of ENO2 in MSI-H CRC patients was associated with worse clinical outcomes, including increased tumor invasion depth (p = 0.007) and greater likelihood of perineural invasion (p = 0.015). Furthermore, the nomogram and calibration curves based on ENO2 showed potential prognosis predictive performance. CONCLUSION: Our findings suggest that ENO2 serves as a novel prognostic biomarker and is associated with the progression of MSI-H CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Phosphopyruvate Hydratase , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Prognosis , Female , Male , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Middle Aged , Nomograms , Single-Cell Analysis , DNA Copy Number Variations
8.
Sci Total Environ ; 932: 172915, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719035

ABSTRACT

The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.


Subject(s)
Metabolomics , Microplastics , Microplastics/toxicity , Environmental Pollutants , Nanoparticles/toxicity , Environmental Monitoring
9.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731477

ABSTRACT

Reppe carbonylation of acetylene is an atom-economic and non-petroleum approach to synthesize acrylic acid and acrylate esters, which are key intermediates in the textile, leather finishing, and polymer industries. In the present work, a noble metal-free Co@SiO2 catalyst was prepared and evaluated in the methoxycarbonylation reaction of acetylene. It was discovered that pretreatment of the catalyst by different reductants (i.e., C2H2, CO, H2, and syngas) greatly improved the catalytic activity, of which Co/SiO2-H2 demonstrated the best performance under conditions of 160 °C, 0.05 MPa C2H2, 4 MPa CO, and 1 h, affording a production rate of 4.38 gMA+MP gcat-1 h-1 for methyl acrylate (MA) and methyl propionate (MP) and 0.91 gDMS gcat-1 h-1 for dimethyl succinate (DMS), respectively. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectra of CO adsorption (CO-DRIFTS) measurements revealed that an H2 reduction decreased the size of the Co nanoparticles and promoted the formation of hollow architectures, leading to an increase in the metal surface area and CO adsorption on the catalyst. The hot filtration experiment confirmed that Co2(CO)8 was generated in situ during the reaction or at the pre-activation stage, which served as the genuine active species. Our work provides a facile and convenient approach to the in situ synthetization of Co2(CO)8 for a Reppe carbonylation reaction.

10.
Cell Death Differ ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698061

ABSTRACT

Uterine luminal epithelia (LE), the first layer contacting with the blastocyst, acquire receptivity for normal embryo implantation. Besides the well-accepted transcriptional regulation dominated by ovarian estrogen and progesterone for receptivity establishment, the involvement of epigenetic mechanisms remains elusive. This study systematically profiles the transcriptome and genome-wide H3K27me3 distribution in the LE throughout the preimplantation. Combining genetic and pharmacological approaches targeting the PRC2 core enzyme Ezh1/2, we demonstrate that the defective remodeling of H3K27me3 in the preimplantation stage disrupts the differentiation of LE, and derails uterine receptivity, resulting in implantation failure. Specifically, crucial epithelial genes, Pgr, Gata2, and Sgk1, are transcriptionally silenced through de novo deposition of H3K27me3 for LE transformation, and their sustained expression in the absence of H3K27me3 synergistically confines the nuclear translocation of FOXO1. Further functional studies identify several actin-associated genes, including Arpin, Tmod1, and Pdlim2, as novel direct targets of H3K27me3. Their aberrantly elevated expression impedes the morphological remodeling of LE, a hindrance alleviated by treatment with cytochalasin D which depolymerizes F-actin. Collectively, this study uncovers a previously unappreciated epigenetic regulatory mechanism for the transcriptional silencing of key LE genes via H3K27me3, essential for LE differentiation and thus embryo implantation.

11.
Sci Rep ; 14(1): 10710, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729985

ABSTRACT

Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.


Subject(s)
Gene Expression Regulation, Plant , Lactuca , Metabolomics , Lactuca/metabolism , Lactuca/drug effects , Lactuca/growth & development , Lactuca/genetics , Metabolomics/methods , Gene Expression Regulation, Plant/drug effects , Salt Stress , Transcriptome , Metabolome/drug effects , Gene Expression Profiling , Multiomics
12.
Plant Physiol Biochem ; 211: 108713, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739963

ABSTRACT

The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 µM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.


Subject(s)
Curcumin , Metabolomics , Photosynthesis , Spinacia oleracea , Curcumin/pharmacology , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Stress, Physiological/drug effects
13.
J Sci Food Agric ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804737

ABSTRACT

BACKGROUND: Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO3) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa). RESULTS: Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO3, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO3. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes. CONCLUSION: The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.

14.
Small Methods ; : e2400006, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593368

ABSTRACT

Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.

15.
Cancer Lett ; 590: 216869, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38593918

ABSTRACT

Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.


Subject(s)
Cell Proliferation , Head and Neck Neoplasms , Histone Acetyltransferases , Squamous Cell Carcinoma of Head and Neck , Humans , Animals , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Acetylation , Cell Line, Tumor , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Mice , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Lysine Acetyltransferases/metabolism , Lysine Acetyltransferases/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Warburg Effect, Oncologic , Male , Female , Cell Movement , Xenograft Model Antitumor Assays , Neoplasm Invasiveness , Isoenzymes/metabolism , Isoenzymes/genetics
16.
J Am Chem Soc ; 146(17): 11955-11967, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640231

ABSTRACT

Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.

17.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38513516

ABSTRACT

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Subject(s)
Lactuca , Microplastics , Microplastics/analysis , Microplastics/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Soil/chemistry
18.
J Cell Physiol ; 239(6): e31244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38529784

ABSTRACT

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.


Subject(s)
Mitochondria , Oocytes , Polycomb Repressive Complex 2 , Animals , Female , Mice , Apoptosis/genetics , Autophagy/genetics , Blastocyst/metabolism , Embryonic Development/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/deficiency , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Membrane Potential, Mitochondrial , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Morula/metabolism , Oocytes/metabolism , Oxidative Stress/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Reactive Oxygen Species/metabolism , Histones/metabolism
19.
Invest Ophthalmol Vis Sci ; 65(3): 38, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38551583

ABSTRACT

Purpose: The aim of this study was to describe the transcriptional changes of individual cellular components in the lacrimal sac in patients with primary acquired nasolacrimal duct obstruction (PANDO) and attempt to construct the first lacrimal sac cellular atlas to elucidate the potential mechanisms that may drive the disease pathogenesis. Methods: Lacrimal sac samples were obtained intra-operatively during the endoscopic dacryocystorhinostomy (EnDCR) procedure from five patients. Single-cell RNA sequencing was performed to analyze each individual cell population including epithelial and immune cells during the early inflammatory and late inflammatory phases of the disease. Results: Eleven cell types were identified among 25,791 cells. T cells and B cells were the cell populations with the greatest variation in cell numbers between the two phases and were involved in immune response and epithelium migration-related pathways. The present study showed that epithelial cells highly expressed the genes of senescence-associated secretory phenotype (SASP) and were involved in influencing the inflammation, neutrophil chemotaxis, and migration during the late inflammatory stage. Enhanced activity of CXCLs-CXCRs between the epithelial cells and neutrophils was noted by the cell-cell communication analysis and is suspected to play a role in inflammation by recruiting more neutrophils. Conclusions: The study presents a comprehensive single-cell landscape of the lacrimal sac cells in different phases of PANDO. The contribution of T cells, B cells, and epithelial cells to the inflammatory response, and construction of the intercellular signaling networks between the cells within the lacrimal sac has further enhanced the present understanding of the PANDO pathogenesis.


Subject(s)
Dacryocystorhinostomy , Lacrimal Apparatus , Lacrimal Duct Obstruction , Nasolacrimal Duct , Humans , Nasolacrimal Duct/metabolism , Lacrimal Duct Obstruction/genetics , Lacrimal Duct Obstruction/metabolism , Single-Cell Gene Expression Analysis , Dacryocystorhinostomy/adverse effects , Dacryocystorhinostomy/methods , Inflammation/metabolism , Lacrimal Apparatus/metabolism
20.
RSC Adv ; 14(11): 7490-7498, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38440281

ABSTRACT

In this work, we report a novel high-pressure solid-state metathesis (HSM) reaction to produce spherical bulk (diameters 2-4 mm) Co-C alloys (Co3C and Co1-xCx). At 2-5 GPa and 1300 °C, C atoms preferentially occupy the interstitial sites of the face-centered cubic (fcc) Co lattice, leading to the formation of metastable Pnma Co3C. The Co3C decomposes above 1400 °C at 2-5 GPa, C atoms infiltrate the interstitial sites of the fcc Co lattice, saturating the C content in Co, forming an fcc Co1-xCx solid solution while the C atoms in excess are found to precipitate in the form of graphite. The Vickers hardness of the Co-C alloys is approximately 6.1 GPa, representing a 19.6% increase compared to hexagonal close-packed (hcp) Co. First-principles calculations indicate that the presence of C atoms in the Pnma Co3C structure leads to a relative decrease in the magnetic moments of the two distinct Co atom occupancies. The Co-C alloys exhibited a soft magnetic behavior with saturation magnetization up to 93.71 emu g-1 and coercivity of 74.8 Oe; coercivity increased as the synthesis pressure rises.

SELECTION OF CITATIONS
SEARCH DETAIL
...