Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36542898

ABSTRACT

Yinchenwuling Fang (YCWLF), a famous traditional Chinese medicine, has been used clinically for cholestatic liver disease treatment. However, quantification analysis for YCWLF components and their pharmacological effects remains largely unknown. Therefore, we aimed to determine the YCWLF components and their activities. Quantification analysis of 12 YCWLF components was performed using a comprehensive ultra-performance liquid chromatography (UPLC) coupled with the triple-quadrupole mass spectrometry method. Then, the anti-cholestasis effect and potential mechanism of YCWLF were performed in a mouse model induced by alpha-naphthyl isothiocyanate (ANIT). YCWLF decreased serum biochemical indicators (ALT, AST, ALP, TBA, TBIL, and DBIL) and ameliorated liver tissue damage in cholestatic mice. Mechanically, YCWLF increased the expression of the farnesoid X receptor (FXR) and its downstream efflux transporters and metabolic enzyme genes, reversed the disordered homeostasis of bile acids, and decreased cholestatic liver injury. Based on the important role of FXR in YCWLF amelioration on cholestasis, a dual-luciferase assay was used to screen the potential agonist of FXR from 12 YCWLF components. Chlorogenic acid, 4-hydroxyacetophenone, scoparone, atractylenolide Ⅰ, atractylenolide Ⅱ, and alisol B 23-acetate exhibited an activity effect of FXR. This study provides novel a therapeutic mechanism and potential active compounds of YCWLF on cholestatic liver injury.


Subject(s)
Cholestasis , Liver Diseases , Mice , Animals , 1-Naphthylisothiocyanate/toxicity , 1-Naphthylisothiocyanate/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Liver/metabolism , Liver Diseases/metabolism , Isothiocyanates/pharmacology , Bile Acids and Salts/metabolism
2.
Int J Nanomedicine ; 15: 2669-2683, 2020.
Article in English | MEDLINE | ID: mdl-32368048

ABSTRACT

BACKGROUND: Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanomaterials in a variety of fields such as industrial, pharmaceutical, and household applications. Increasing evidence suggests that ZnO NPs could elicit unignorable harmful effect to the cardiovascular system, but the potential deleterious effects to human cardiomyocytes remain to be elucidated. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been increasingly used as a promising in vitro model of cardiomyocyte in various fields such as drug cardiac safety evaluation. Herein, the present study was designed to elucidate the cardiac adverse effects of ZnO NPs and explore the possible underlying mechanism using hiPSC-CMs. METHODS: ZnO NPs were characterized by transmission electron microscopy and dynamic light scattering. The cytotoxicity induced by ZnO NPs in hiPSC-CMs was evaluated by determination of cell viability and lactate dehydrogenase release. Cellular reactive oxygen species (ROS) and mitochondrial membrane potential were measured by high-content analysis (HCA). Mitochondrial biogenesis was assayed by detection of mtDNA copy number and PGC-1α pathway. Moreover, microelectrode array techniques were used to investigate cardiac electrophysiological alterations. RESULTS: We demonstrated that ZnO NPs concentration- and time-dependently elicited cytotoxicity in hiPSC-CMs. The results from HCA revealed that ZnO NPs exposure at low-cytotoxic concentrations significantly promoted ROS generation and induced mitochondrial dysfunction. We further demonstrated that ZnO NPs could impair mitochondrial biogenesis and inhibit PGC-1α pathway. In addition, ZnO NPs at insignificantly cytotoxic concentrations were found to trigger cardiac electrophysiological alterations as evidenced by decreases of beat rate and spike amplitude. CONCLUSION: Our findings unveiled the potential harmful effects of ZnO NPs to human cardiomyocytes that involve mitochondrial biogenesis and the PGC-1α pathway that could affect cardiac electrophysiological function.


Subject(s)
Heart/physiopathology , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Nanoparticles/toxicity , Organelle Biogenesis , Zinc Oxide/toxicity , Cell Differentiation/drug effects , DNA, Mitochondrial/genetics , Heart/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Nanoparticles/ultrastructure , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...