Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.853
Filter
1.
Food Chem ; 463(Pt 4): 141390, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39362092

ABSTRACT

The potential biological properties of protein hydrolysates have generated considerable research interest. This study was to hydrolyze black soybean protein (BSP) using five different commercial enzymes, and elucidate the influence of these enzymes on the structure and biological activities of the resulting hydrolysates. Enzymatic treatment changed secondary and tertiary structures of BSP, decreased particle size, α-helix and ß-sheet. Alcalase hydrolysate had the highest hydrolytic degree (29.84 %), absolute zeta potential (38.43 mV), the smallest particle (149.87 nm) and molecular weight (<3 kDa). In silico revealed alcalase hydrolysate had the strongest antioxidant potential. This finding was further validated through the lowest IC50 (mg/mL) in DPPH (2.67), ABTS (0.82), Fe2+ chelating (1.33) and·OH (1.12). Moreover, cellular antioxidant assays showed alcalase hydrolysate had the strongest cytoprotective effects on H2O2-induced PC12 cells. These results suggest BSPEHs, especially those prepared by alcalase, have potential as bioactive ingredients for nutrition, healthcare and food industry.

2.
Ecotoxicol Environ Saf ; 285: 117121, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357380

ABSTRACT

BACKGROUND: Genetic factors and environmental exposures, including air pollution, contribute to the risk of depression and anxiety. While the association between air pollution and depression and anxiety has been established in the UK Biobank, there has been limited research exploring this relationship from a genetic perspective. METHODS: Based on individual genotypic and phenotypic data from a cohort of 104,385 participants in the UK Biobank, a polygenic risk score for depression and anxiety was constructed to explore the joint effects of nitric oxide (NO), nitrogen dioxide (NO2), particulate matter (PM) with a diameter of ⩽2.5 µm (PM2.5) and 2.5-10 µm (PMcoarse) with depression and anxiety by linear and logistic regression models. Subsequently, a genome-wide gene-environmental interaction study (GWEIS) was performed using PLINK 2.0 to identify the genes interacting with air pollution for depression and anxiety. RESULTS: A substantial risk of depression and anxiety development was detected in participants exposed to the high air pollution concomitantly with high genetic risk. GWEIS identified 166, 23, 18, and 164 significant candidate loci interacting with NO, NO2, PM2.5, and PMcoarse for Patient Health Questionnaire-9 (PHQ-9) score, and detected 44, 10, 10, and 114 candidate loci associated with NO, NO2, PM2.5, and PMcoarse for General Anxiety Disorder (GAD-7) score, respectively. And some significant genes overlapped among four air pollutants, like TSN (rs184699498, PNO2 = 3.47 × 10-9; rs139212326, PPM2.5 = 1.51 × 10-8) and HSP90AB7P(rs150987455, PNO2 = 1.63 × 10-11; rs150987455, PPM2.5 = 7.64 × 10-11), which were common genes affecting PHQ-9 score for both NO2 and PM2.5. CONCLUSION: Our study identified the joint effects of air pollution with genetic susceptibility on the risk of depression and anxiety, and provided several novel candidate genes for the interaction, contributing to an understanding of the genetic architecture of depression and anxiety.

3.
J Integr Plant Biol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360899

ABSTRACT

Disease resistance is often associated with compromised plant growth and yield due to defense-growth tradeoffs. However, key components and mechanisms underlying the defense-growth tradeoffs are rarely explored in maize. In this study, we find that ZmSKI3, a putative subunit of the SUPERKILLER (SKI) complex that mediates the 3'-5' degradation of RNA, regulates both plant development and disease resistance in maize. The Zmski3 mutants showed retarded plant growth and constitutively activated defense responses, while the ZmSKI3 overexpression lines are more susceptible to Curvularia lunata and Bipolaris maydis. Consistently, the expression of defense-related genes was generally up-regulated, while expressions of growth-related genes were mostly down-regulated in leaves of the Zmski3-1 mutant compared to that of wild type. In addition, 223 differentially expressed genes that are up-regulated in Zmski3-1 mutant but down-regulated in the ZmSKI3 overexpression line are identified as potential target genes of ZmSKI3. Moreover, small interfering RNAs targeting the transcripts of the defense- and growth-related genes are differentially accumulated, likely to combat the increase of defense-related transcripts but decrease of growth-related transcripts in Zmski3-1 mutant. Taken together, our study indicates that plant growth and immunity could be regulated by both ZmSKI3-mediated RNA decay and post-transcriptional gene silencing in maize.

4.
Front Immunol ; 15: 1374100, 2024.
Article in English | MEDLINE | ID: mdl-39364410

ABSTRACT

Introduction: Pulmonary arterial hypertension (PAH) is a serious complication of systemic lupus erythematosus (SLE) with increased mortality. A prothrombotic state may contribute to pathogenesis of SLE-PAH. Extracellular vesicles (EVs) are known to be associated with thrombosis. Here, we investigated circulating EVs and their associations with SLE-PAH. Methods: Eighteen SLE-PAH patients, 36 SLE-non-PAH patients, and 36 healthy controls (HCs) were enrolled. Flow cytometry was used to analyze circulating EVs from leukocytes (LEVs), red blood cells (REVs), platelets (PEVs), endothelial cells (EEVs), and Annexin V+ EVs with membrane phosphatidylserine (PS) exposure. Results: Plasma levels of all EV subgroups were elevated in SLE patients with or without PAH compared to HCs. Furthermore, plasma Annexin V+ EVs, LEVs, PEVs, REVs, EEVs, and Annexin V+ REVs were significantly elevated in SLE-PAH patients compared to SLE-non-PAH patients. Additionally, PAH patients with moderate/high SLE showed a significant increase in LEVs, PEVs, REVs, Annexin V+ EVs, and Annexin V+ REVs compared to SLE-non-PAH patients. However, PAH patients with inactive/mild SLE only exhibited elevations in Annexin V+ EVs, REVs, and Annexin V+ REVs. In the SLE-PAH patients, EEVs were positively correlated with pulmonary arterial systolic pressure, while PEVs and EEVs were positively correlated with right ventricular diameter. Moreover, the receiver operating characteristic curve indicated that Annexin V+ EVs, LEVs, PEVs, REVs, EEVs and Annexin V+ REVs could predict the presence of PAH in SLE patients. Importantly, multivariate logistic regression analysis showed that circulating levels of LEVs or REVs, anti-nRNP antibody, and serositis were independent risk factors for PAH in SLE patients. Discussion: Findings reveal that specific subgroups of circulating EVs contribute to the hypercoagulation state and the severity of SLE-PAH. Higher plasma levels of LEVs or REVs may serve as biomarkers for SLE-PAH.


Subject(s)
Biomarkers , Extracellular Vesicles , Lupus Erythematosus, Systemic , Pulmonary Arterial Hypertension , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/complications , Female , Extracellular Vesicles/metabolism , Biomarkers/blood , Male , Adult , Middle Aged , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/diagnosis , Annexin A5/blood , Endothelial Cells/metabolism , Case-Control Studies , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/diagnosis
5.
Cell Biochem Biophys ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39322790

ABSTRACT

Cervical cancer stands as the most frequently diagnosed malignancy affecting the female reproductive. The erythropoietin-producing hepatocyte (Eph) family tyrosine kinases play important roles in tumorigenesis and cancer aggression. However, the exact role of EPHB6 in cervical cancer remains unknown. The present study investigated the role of EPHB6 in the malignant process of cervical cancer. GEPIA, tnmplot and kmplot database was used to study the expression of EPHB6 in cervical cancer tissues. western blotting was used to detect the expression of EPHB6, CyclinD, CDK4, CDK6, CBX7, MMP2 and MMP9. CCK8 and EDU staining were used to detect cell proliferation. Wound healing and transwell were used to detect cell proliferation and migration. Flow cytometry was used to detect cell cycle level. The linkedomics database was used to predict the correlation of EPHB6 and CBX7 in cervical cancer. Subsequently, HDOCK server was used to predict the combination of EPHB6 and CBX7. Our current results suggested that the expression of EPHB6 is reduced in cervical cancer tissues and cell lines, and the lower the expression, the worse the prognosis. Moreover, overexpression of EPHB6 inhibits cell proliferation, invasion and migration and cycle acceleration of C33A cells. Furthermore, EPHB6 and CBX7 bind to each other in C33A cells, and EPHB6 inhibits cell proliferation, invasion, migration and cell cycle acceleration in cervical cancer by binding to CBX7. EPHB6 expression is reduced in cervical cancer tissues and cells. Its overexpression inhibits proliferation, invasion, migration, and cell cycle acceleration in C33A cells, exhibiting synergy when bound to CBX7.

6.
Front Immunol ; 15: 1460282, 2024.
Article in English | MEDLINE | ID: mdl-39295859

ABSTRACT

Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.


Subject(s)
Immunotherapy , Liver Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Immunotherapy/methods , Animals , Liver/immunology , Liver/pathology , Tumor Escape , Immune Tolerance
7.
Heliyon ; 10(17): e37415, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296136

ABSTRACT

Background: High circulatory lipoprotein(a) [Lp(a)] concentration promotes atherosclerosis; however, its efficacy in predicting the extent of atherosclerotic coronary heart disease (CHD) with coronary artery obstruction and major adverse cardiovascular events (MACEs) in diabetic patients remains questionable. This study aimed to examine whether elevated circulating Lp(a) levels exacerbate CHD and to assess their utility in predicting MACEs in individuals diagnosed with type 2 diabetes mellitus (T2DM). Methods: In total, 4332 patients diagnosed with T2DM who underwent coronary angiography (CAG) were included and categorized into two groups (CHD and non-CHD) based on the CAG results. We used a correlation analysis to explore the potential links between the levels of circulating Lp(a) and CHD severity. Cox regression analysis was performed to evaluate MACEs. Results: The concentrations of circulating Lp(a) were markedly elevated in the CHD group and positively correlated with disease severity. Our results indicate that elevated circulating Lp(a) is a crucial risk factor that significantly contributes to both the progression and severity of CHD. The differences between the two groups are evident in the risk of CHD occurrence [odds ratio (OR) = 1.597, 95 % confidence interval (CI): 1.354-1.893, p < 0.001], the different levels of vessel involvement (OR = 1.908 for triple-vessel vs. single-vessel disease, 95 % CI: 1.401-2.711, p < 0.001), and their relation to the Gensini Score (OR = 2.002 for high vs. low GS, 95 % CI: 1.514-2.881, p < 0.001). Over the course of the 7-year follow-up period, the multivariate Cox regression analysis indicated that increased levels Lp(a) levels are independently associated with the occurrence of MACEs [hazard ratio (HR) = 1.915, 95 % CI: 1.571-2.493, p < 0.001]. Conclusion: We confirmed a positive correlation among circulating Lp(a) levels, CHD lesions count, and Gensini scores. Moreover, Lp(a) levels have predictive significance for the occurrence of MACEs in T2DM patients.

8.
Clin Cosmet Investig Dermatol ; 17: 2071-2075, 2024.
Article in English | MEDLINE | ID: mdl-39296327

ABSTRACT

Condyloma acuminatum (CA), commonly known as anogenital warts, is a prevalent sexually transmitted disease primarily caused by low risk human papillomavirus (HPV) types 6 and 11. This case report outlines the successful use of photodynamic therapy (PDT) to treat extensive condyloma acuminatum in a young female patient with systemic lupus erythematosus (SLE) undergoing immunosuppressive treatment. The patient also had cervical intraepithelial neoplasia grade I. Carbon dioxide laser treatment were initially used to remove some surface warts, followed by PDT, resulting in satisfactory outcomes. After seven sessions, the warty growths were successfully removed. Interdisciplinary collaboration, involving rheumatology, gynecology, and dermatology, facilitated comprehensive management. This case highlights the efficacy and safety of PDT in treating condyloma acuminatum and suggests its potential as an alternative treatment for young SLE patients with similar conditions.

9.
BMC Pregnancy Childbirth ; 24(1): 606, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294589

ABSTRACT

BACKGROUND: With the extensive use of chromosomal microarray analysis (CMA), an increasing number of variants of uncertain significance (VOUS) have been detected. The objective of the present study was to elucidate the pathogenicity and clinical variability associated with isolated recurrent 4q35.2 microduplications within the Chinese population. METHODS: The present study involved 14 cases of isolated recurrent 4q35.2 microduplication (including 12 fetuses and 2 cases of pediatric patients) out of 5,188 subjects who sought genetic consultation at our hospital and received CMA detection. WES technology was subsequently utilized to identify additional sequence variants in a patient with multiple clinical anomalies. RESULTS: All 14 cases exhibited isolated recurrent 4q35.2 microduplications spanning a 1.0-Mb region encompassing the ZFP42 gene. Among the 12 fetuses, 11 displayed normal clinical features, while one was born with renal duplication and hydronephrosis. Additionally, in the two pediatric patients, WES was performed for Case 1, who presented with congenital cataracts, severe intellectual disability, and seizures. This patient inherited the 4q35.2 microduplication from his phenotypically normal mother. WES identified a novel NM_000276:c.2042G > T (p.G681V) variant in the OCRL gene, which is associated with Lowe syndrome and may account for the observed phenotypic variability within this family. CONCLUSION: A series of 14 cases with isolated recurrent 4q35.2 microduplications were investigated, highlighting a potential association with increased susceptibility to renal abnormalities. Further, the present findings may expand the mutation spectrum of the OCRL gene associated with Lowe syndrome and provide valuable insights for the genetic etiological diagnosis of patients with unexplained copy number variants.


Subject(s)
Chromosome Duplication , Adult , Female , Humans , Male , Pregnancy , China , Chromosomes, Human, Pair 4/genetics , Cytogenetic Analysis , East Asian People/genetics , Prenatal Diagnosis , Retrospective Studies
10.
J Anim Sci ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301922

ABSTRACT

Heat stress is the most common environmental stressor in poultry production, negatively affecting growth performance, meat quality, and welfare. Therefore, the aim of this study was to compare the nutritional effects of dietary supplementation with selenomethionine, BS, and a combination of selenomethionine and BS on broilers challenged with heat stress. A total of 300 21-day-old Ross 308 male broilers were randomly assigned to 5 groups with 6 replicates of 10 broilers per each: control group (CON, broilers raised at 22 ± 2℃); heat stress exposure group (HS, broilers raised at 32 ± 2℃ for 8 h/day); HSS group (HS group supplemented with 0.3 mg/kg selenomethionine); HSB group (HS group supplemented with 1 × 109 cfu/kg BS); and HSBS group (HS group supplemented with 0.3 mg/kg selenomethionine and × 109 cfu/kg BS). The experiment lasted for 21 days. The results indicated that, compared to the CON group, heat stress reduces (P < 0.05) broiler growth performance and damages the meat quality in breast and thigh muscles. Dietary supplementation with selenomethionine and BS did not improve the growth performance of broilers under heat stress. However, compared to the HS group, the HSS, HSB, and HSBS groups showed significantly increased (P < 0.05) pH45 min, redness (a*) and yellowness (b*), muscle fiber density, intramuscular fat (IMF), triglyceride content (TG), and expression levels of Myf5, CAPN 2, FM, SLC27A1, A-FABP, H-FABP, APOB-100, and ACC in breast and thigh muscles. Meanwhile, these groups showed reduced (P < 0.05) lightness (L*), drip loss, shear force, muscle fiber cross-sectional area, and FM gene expression level. The HSBS group showed greater improvement in the physicochemical quality of muscle and volatile substances compared to the HSS and HSB groups. In conclusion, selenomethionine and BS improved meat quality and flavor in broilers under heat stress by modulating muscle fiber composition and characteristics, as well as increasing intramuscular fat deposition.

13.
J Food Sci ; 89(10): 6350-6361, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39261646

ABSTRACT

Cold plasma (CP) is a novel environmental-friendly preservation technology that causes minimal damage to fruits. The flavor and quality of winter jujubes have decreased with the extended storage time. Currently, the research on the use of CP on winter jujubes (Ziziphus jujuba Mill. 'Dongzao') mainly focuses on the effect of the treatment on storage quality. There is limited research on the effect of CP treatment on the flavor of winter jujubes. This study used different CP (80 kV) treatment durations (0, 5, and 10 min) to treat winter jujubes. The appropriate treatment time was selected by observing the changes in color, respiratory intensity, soluble sugar content, total acid content, and vitamin C (VC) content of winter jujubes. Amino acid analyzer and headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometric detection were used to analyze the effect of CP treatment on the flavor compounds of winter jujubes. The results showed that the 5-min CP treatment could significantly slow down the red coloration of winter jujube while maintaining high soluble sugar, total acid, and VC content. At the respiration peak, the respiratory intensity of the 5-min CP treatment group was 0.74 mg CO2·kg-1·h-1 lower than that of the control group (p < 0.05). CP treatment slowed down the decrease in the content of amino acids and volatile organic compounds (such as 2-methyl-4-pentenal, 2-hexenal, and 3-hexenal) in winter jujubes. This study will provide basic data for applying CP preservation technology in postharvest winter jujubes.


Subject(s)
Fruit , Odorants , Ziziphus , Fruit/chemistry , Ziziphus/chemistry , Odorants/analysis , Plasma Gases , Ascorbic Acid/analysis , Food Preservation/methods , Taste , Gas Chromatography-Mass Spectrometry/methods , Food Handling/methods , Volatile Organic Compounds/analysis , Color
14.
Int J Biol Macromol ; 280(Pt 1): 135500, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276906

ABSTRACT

Polysaccharides from sea cucumbers are known for their biological activities, but little is known about those from sea cucumber viscera. The present study isolated a sulfated polysaccharide (SCVP-2) from the viscera of Apostichopus japonicas, which had a molecular weight of 209.1 kDa. SCVP-2 comprised 66.3 % total sugars, 2.1 % uronic acid, 4.5 % proteins, and 25.5 % sulfate groups, containing glucosamine, galactosamine, glucose, galactose, and fucose. FT-IR and NMR analyses identified SCVP-2 as a fucoidan sulfate with sulfation patterns of the fucose branches as Fuc2S, Fuc4S, and Fuc0S. SEM and AFM analyses showed irregular clusters and linear conformations. SCVP-2 demonstrated strong anti-inflammatory properties both in vitro and in vivo. In lipopolysaccharide (LPS)-induced inflammation in macrophage RAW264.7 cells, SCVP-2 significantly reduced nitric oxide (NO) and cytokine secretion (IL-1ß, IL-6, TNF-α). Additionally, it downregulated the expression of these cytokine genes. Furthermore, the anti-inflammatory mechanism of SCVP-2 was related to the inhibition of the MAPKs and NF-κB pathways. SCVP-2's anti-inflammatory capacity was confirmed in acute inflammation models, including xylene-induced ear swelling and acetic acid-induced peritoneal capillary permeability, and in high-fat diet-induced systemic low-grade chronic inflammation. In conclusion, SCVP-2 exhibits significant anti-inflammatory activity, suggesting its potential for development as a functional food ingredient or therapeutic agent for inflammation-related diseases.

15.
Food Res Int ; 195: 114976, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277213

ABSTRACT

Changes in dietary patterns and living habits have led to an increasing number of individuals with elevated cholesterol levels. Excessive consumption of high-cholesterol foods can disrupt the body's lipid metabolism. Numerous studies have firmly established the cholesterol-lowering effects of probiotics and prebiotics, with evidence showing that the synergistic use of synbiotics is functionally more potent than using probiotics or prebiotics alone. Currently, the screening strategy involves screening prebiotics for synbiotic development with probiotics as the core. However, in comparison to probiotics, there are fewer types of prebiotics available, leading to limited resources. Consequently, the combinations of synbiotics obtained are restricted, and probiotics and prebiotics are only relatively suitable. Therefore, in this study, a novel synbiotic screening strategy with prebiotics as the core was developed. The synbiotic combination of Lactobacillus rhamnosus S_82 and xylo-oligosaccharides was screened from the intestinal tract of young people through five generations of xylo-oligosaccharides. Subsequently, the cholesterol-lowering ability of the medium was simulated, and the two carbon sources of glucose and xylo-oligosaccharides were screened out. The results showed that synbiotics may participate in cholesterol-lowering regulation by down-regulating the expression of NPC1L1 gene, down-regulating ACAT2 and increasing the expression of ABCG8 gene in vitro through cell adsorption and cell absorption in vitro, and regulating the intestinal microbiota. Synbiotics hold promise as potential candidates for the prevention of hypercholesterolemia in humans and animals, and this study providing a theoretical foundation for the development of new synbiotic products.


Subject(s)
Lacticaseibacillus rhamnosus , Oligosaccharides , Prebiotics , Synbiotics , Lacticaseibacillus rhamnosus/metabolism , Oligosaccharides/pharmacology , Humans , Hypolipidemic Agents/pharmacology , Cholesterol/metabolism , Cholesterol/blood , Gastrointestinal Microbiome/drug effects , Probiotics , Glucuronates
16.
Food Res Int ; 195: 114991, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277253

ABSTRACT

Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.


Subject(s)
Food Handling , Food Industry , Hydrostatic Pressure , Food Handling/methods , Food Preservation/methods , Food Analysis , Nutritive Value , Sterilization/methods , Humans
17.
J Microbiol Methods ; 225: 107025, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39218357

ABSTRACT

HSD-IO01, a new pure strain of I. obliquus, was isolated and purified from the sclerotium of I. obliquus of Daxing'an Mountains. Physical radiation-assisted liquid fermentation technology was explored to increase the triterpenoids yield of HSD-IO01. In the 100 mL optimized liquid fermentation system, the hypha dry weight of HSD-IO01 was 1.7734 g, and the triterpenoids yield was 43.43 mg. Yields of triterpenoids increased after induction with ultrasound, microwave, or UV light, respectively. Among them, ultrasonic treatment had the most remarkable induction effect. The yield of triterpenoids would be increased to 68.35 mg (57.38 %) when the HSD-IO01 was treated by 100 W ultrasonic for 45 min. Establishing ultrasonic-assisted liquid fermentation technology could further promote the detailed development and comprehensive utilization of I. obliquus resources.


Subject(s)
Fermentation , Inonotus , Triterpenes , Triterpenes/metabolism , Inonotus/metabolism , Ultraviolet Rays , Microwaves
18.
Foods ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39272484

ABSTRACT

With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.

19.
Foods ; 13(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39272574

ABSTRACT

The digestive properties of starch are crucial in determining postprandial glycaemic excursions. Genistein, an active phytoestrogen, has the potential to influence starch digestion rates. We investigated the way genistein affected the digestive properties of starch in vitro. We performed enzyme kinetics, fluorescence spectroscopy, molecular docking, and molecular dynamics (MD) simulations for analysing the inhibitory properties of genistein on starch digestive enzymes as well as clarifying relevant mechanism of action. Our findings demonstrated that, following the addition of 10% genistein, the contents of slowly digestible and resistant starches increased by 30.34% and 7.18%, respectively. Genistein inhibited α-amylase and α-glucosidase, with half maximal inhibitory concentrations of 0.69 ± 0.06 and 0.11 ± 0.04 mg/mL, respectively. Genistein exhibits a reversible and non-competitive inhibiting effect on α-amylase, while its inhibition on α-glucosidase is a reversible mixed manner type. Fluorescence spectroscopy indicated that the presence of genistein caused declining fluorescence intensity of the two digestive enzymes. Molecular docking and MD simulations showed that genistein binds spontaneously to α-amylase via hydrogen bonds, hydrophobic interactions, and π-stacking, whereas it binds with α-glucosidase via hydrogen bonds and hydrophobic interactions. These findings suggest the potential for developing genistein as a pharmacologic agent for regulating glycaemic excursions.

20.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273436

ABSTRACT

There is an urgent need to accurately quantify microRNA (miRNA)-based Alzheimer's disease (AD) biomarkers, which have emerged as promising diagnostic biomarkers. In this study, we present a rapid and universal approach to establishing a target miRNA-triggered rolling circle amplification (RCA) detection strategy, which achieves ultrasensitive detection of several targets, including miR-let7a-5p, miR-34a-5p, miR-206-3p, miR-9-5p, miR-132-3p, miR-146a-5p, and miR-21-5p. Herein, the padlock probe contains three repeated signal strand binding regions and a target miRNA-specific region. The target miRNA-specific region captures miRNA, and then the padlock probe is circularized with the addition of T4 DNA ligase. Subsequently, an RCA reaction is triggered, and RCA products containing multiple signal strand binding regions are generated to trap abundant fluorescein-labeled signal strands. The addition of exonuclease III (Exo III) causes signal strand digestion and leads to RCA product recycling and liberation of fluorescein. Ultimately, graphene oxide (GO) does not absorb the liberated fluorescein because of poor mutual interaction. This method exhibited high specificity, sensitivity, repeatability, and stability toward let-7a, with a detection limit of 19.35 fM and a linear range of 50 fM to 5 nM. Moreover, it showed excellent applicability for recovering miRNAs in normal human serum. Our strategy was applied to detect miRNAs in the plasma of APP/PS1 mice, demonstrating its potential in the diagnosis of miRNA-associated disease and biochemical research.


Subject(s)
Alzheimer Disease , Early Diagnosis , MicroRNAs , Nucleic Acid Amplification Techniques , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/blood , MicroRNAs/genetics , MicroRNAs/blood , Humans , Nucleic Acid Amplification Techniques/methods , Animals , Mice , Graphite/chemistry , Biomarkers , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL