Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Biomater Adv ; 163: 213950, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972278

ABSTRACT

Traditional tendon engineering using cell-loaded scaffold has limited application potential due to the need of autologous cells. We hypothesize that potent mechanical loading can efficiently induce in situ Achilles tendon regeneration in a rabbit model by using a cell-free porous composite scaffold. In this study, melt-spinning was used to fabricate PGA (polyglycolic acid) and PLA (polylactic acid) filament fibers as well as non-woven PGA fibers. The PLA/PGA (4:2) filament fibers were further braided into a hybrid yarn,which was knitted into a PLA/PGA tubular mesh with potent mechanical property for sustaining natural tendon strain. The results showed that a complete cross-section of Achilles tendon created a model of full mechanical loading on the bridging scaffold, which could efficiently induce in situ tendon regeneration by promoting host cell infiltration, matrix production and tissue remodeling. Histologically, mechanical loading assisted in forming parallel aligned collagen fibers and tenocytes in a fashion similar to those of native tendon. Transmission electron microscope further demonstrated that mechanical strain induced collagen fibril development by increasing fibril diameter and forming bipolar structure, which resulted in enhanced mechanical properties. Interestingly, the synergistic effect between mechanical loading and hyaluronic acid modification was also observed on the induced tenogenic differentiation of infiltrated host fibroblasts. In conclusion, potent mechanical loading is the key inductive microenvironment for in situ tendon regeneration for this polymer-based composite scaffold with proper matrix modification, which may serve as a universal scaffold product for tendon regeneration.

2.
J Adv Nurs ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940406

ABSTRACT

AIM: To identify factors associated with job embeddedness from the perspective of retaining new graduate nurses. DESIGN: The study was cross-sectional in design. METHODS: Convenience and stratified sampling were used to recruit 415 newly graduated nurses from 12 tertiary hospitals in China. Anonymized data were collected through self-designed sociodemographic questionnaires, job embeddedness scale, feedback-seeking behaviour scale, authentic leadership perception scale and decent work scale. Appropriate indicators were used for descriptive statistics and t-tests, ANOVA, Pearson correlation analysis and multiple linear regression to examine the influencing factors. RESULTS: The study showed that monthly income level, decent labour, authentic leadership and feedback-seeking behaviour were significant predictors of job embeddedness among new graduate nurses. CONCLUSION: The job embeddedness of new graduate nurses is moderate. Nursing managers need to construct reasonable and fair compensation incentives, adopt positive leadership styles and encourage proactive feedback-seeking behaviours to improve the job embeddedness of new graduate nurses and alleviate the nursing talent shortage. IMPACT: Exploring the factors influencing the job embeddedness of new graduate nurses provides a reference for establishing new graduate nurse retention strategies to help promote the career development of new graduate nurses and alleviate the nursing brain drain. REPORTING METHOD: We adhered to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

3.
Anim Biosci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38938027

ABSTRACT

Objective: The objective of this study was to reveal the influence of acute and chronic heat stress (HS) on the abundance and function of rumen microbiome and host metabolism. Methods: The forty mid-lactation goats were randomly divided into two artificial environments a control group and a heat-stressed group. This study was collected from two periods, 1 day and 28 days. The first day was defined as control 1 (CT1) and HS 1 (acute HS), and the last day was defined as CT28 and HS28 (chronic HS). On the first and last day, 6 dairy goats in each group were randomly selected to collect rumen liquid after the morning feeding through oral stomach tubes. The barn temperature and humidity were recorded every day. Results: Disruption of the rumen microbiome was observed under chronic HS, represented by an increase in the abundance of Prevotella and Bacteroidales (p<0.05), and upregulation of carbohydrate transport and metabolism functions (p<0.05). Additionally, the abundance of Succinimonas and Ruminobacter in chronic HS is lower than in acute HS (p<0.05), and the functions of intracellular trafficking, secretion and vesicular transport, and the cytoskeleton were downregulated (p<0.05). Conclusion: HS affected the interaction between the microbiota and host, thereby regulating milk production in dairy goats. These findings increased understanding of the crosstalk between hosts and microorganisms.

4.
Semin Ophthalmol ; : 1-5, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762793

ABSTRACT

PURPOSE: To evaluate the incidence and cost of intraocular lens(IOL) waste during IOL implantation, as well as the reasons for it. METHODS: A retrospective analysis was conducted on the data of 485 patients from the IOL waste registers of a single tertiary eye hospital in China during 2016-2020. The primary outcomes were the incidence, cost, and reasons for different IOL properties. Cases were examined to ascertain IOL material, design, procedural details, and causes of waste. RESULTS: IOL waste occurred in 485 (6.62‰) of the 73,246 IOL implantations during the study period. The total cost of IOL waste was 429, 850.26 Chinese Yuan (CNY) related to waste with an average cost of 2, 442.33 CNY per procedure during the study period. Comparisons between IOL properties showed that polymethyl methacrylate (PMMA) material (39, 2.05%), three-piece design (142, 1.49%), and secondary IOL implantation (26, 2.16%) were associated with IOL wastage, and the difference was statistically significant. The causes of IOL waste were damage (107, 60.80%), patient reasons (37, 21.26%), aseptic errors (22, 12.50%), IOL quality problems (8, 4.55%), and loss (2, 1.14%). CONCLUSIONS: The incidence of IOL waste is low, but still leads to a significant cost burden due to a large number of cataract surgeries. PMMA material, three-piece design, and secondary implantation were identified as factors increasing IOL waste. Damage emerged as the primary reason for waste, largely attributed to human error. Therefore, the development of strategies to mitigate IOL waste is imperative.

5.
Int J Biol Macromol ; 267(Pt 2): 131658, 2024 May.
Article in English | MEDLINE | ID: mdl-38636759

ABSTRACT

Moisture evaporation plays a crucial role in thermal management of human body, particularly in perspiration process. However, current fabrics aim for sweat removal and takes little account of basic thermo-regulation of sweat, resulted in their limited evaporation capacity and heat dissipation at moderate/intense scenarios. In this study, a hygroscopic cooling (h-cool) fabric based on multi-functional design, for personal perspiration management, was described. By using economic and effective weaving technology, directional moisture transport routes and heat conductive pathways were incorporated in the construct. The resultant fabric showed 10 times greater one-way transport index higher than cotton, Dri-FIT and Coolswitch fabrics, which contributed to highly enhanced evaporation ability (∼4.5 times than cotton), not merely liquid diffusion. As a result, h-cool fabric performed 2.1-4.2 °C cooling efficacy with significantly reduced sweat consuming than cotton, Dri-FIT and Coolswitch fabrics in the artificial sweating skin. Finally, the practical applications by actually wearing h-cool fabric showed great evaporative-cooling efficacy during different physical activities. Owing to the excellent thermo-moisture management ability, we expect the novel concept and construct of h-cool fabric can provide promising strategy for developing functional textiles with great "cool" and comfortable "dry" tactile sensation at various daily scenarios.


Subject(s)
Sweat , Textiles , Humans , Sweat/chemistry , Hot Temperature , Wettability , Sweating
6.
ACS Appl Mater Interfaces ; 16(8): 9749-9767, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359334

ABSTRACT

The treatment of diabetic chronic wounds is still faced with great challenges, mainly due to wound infection, excessive inflammation, and peripheral vascular disease in the wound area. Therefore, it is of great importance to develop a novel multifunctional hydrogel with high efficiency to accelerate diabetic wound healing. Curcumin (Cur), a Chinese herbal, has shown great potential in enhancing the healing of diabetic chronic wounds because of its immunomodulatory and pro-angiogenic properties. However, its low aqueous solubility, poor bioavailability, and chemical instability have limited its clinical applications. To address these current bottlenecks, novel poly(vinyl alcohol) (PVA)-chitosan (CS)/sodium alginate (SA)-Cur (PCSA) hydrogels were prepared for the first time, and they demonstrated all of the above intriguing performances by the Michael addition reaction of CS and Cur. PCSA hydrogels show multiple dynamic bonds, which possess strong mechanical properties (tensile stress: ∼0.980 MPa; toughness: ∼258.45 kJ/m3; and compressive strength: ∼7.38 MPa at strain of 80%). These intriguing performances provided an optimal microenvironment for cell migration and proliferation and also promoted the growth of blood vessels, leading to early angiogenesis. Importantly, the experimental results demonstrated that PCSA hydrogels can effectively transform pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages without the need for additional ingredients in vitro. Benefiting from these characteristics, a full-thickness diabetic wound in a rat model demonstrated that PCSA hydrogels can effectively accelerate wound healing via ROS-scavenging, downregulation of IL-1ß, and upregulation of CD31 expression, resulting in angiogenesis and collagen deposition. This strategy not only provides a simple and safe Cur-based hydrogel for diabetic wound healing but also highlights the significant potential for the development of high-performance biomaterials for promoting diabetic wound healing using traditional Chinese medicine.


Subject(s)
Anti-Infective Agents , Chitosan , Curcumin , Diabetes Mellitus , Rats , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Curcumin/chemistry , Antioxidants/pharmacology , Angiogenesis , Wound Healing , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Infective Agents/pharmacology , Chitosan/pharmacology , Anti-Bacterial Agents/chemistry
7.
BMC Nurs ; 23(1): 10, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163860

ABSTRACT

BACKGROUND: Feedback is critical to improving practitioners' clinical practice and professional growth. Although they are still considered junior practitioners, their feedback-seeking experiences have yet to be investigated. This study aimed to understand the fundamental thoughts and experiences of new graduate nurses regarding feedback-seeking and to identify the main factors that influence their feedback-seeking behaviors. METHODS: Conducting a descriptive phenomenological study, semi-structured in-depth interviews with newly graduated nurses from four hospitals in Zhejiang Province, China, face-to-face or via video call in the hospital conference room through purposive and snowball sampling. Interview data were evaluated using Colaizzi's 7-step phenomenological data analysis. The COREQ checklist was followed. RESULTS: A total of 15 new graduate nurses were interviewed as a sample, and 13 categories emerged from our data. They were categorized into four central elements: (1) perceptions and attitudes, (2) drivers, (3) dilemmas and needs, and (4) transformation and growth. CONCLUSIONS: This study found that new graduate nurses have various needs but face dilemmas in the feedback-seeking process. Nursing managers should be proficient at providing positive leadership, collaborating with clinical mentors to foster an atmosphere where new graduate nurses may obtain honest, transparent, and fair feedback, and exercising caution when providing negative feedback.

8.
Animals (Basel) ; 13(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067082

ABSTRACT

This study aimed to explore the effects of light-emitting diode (LED) light colors on growth, intestinal morphology, and cecal microbiota in broilers. A total of 360 healthy male Arbor Acres (AA) broilers with similar weights were selected and divided into four groups with six replicates in each group and 15 broilers in each replicate: LED white light (W), LED green light (G), LED blue light (B), and LED blue-green composite light (BG). The experimental period was 42 d, the light cycle of each treatment group was 23L:1D (23 h of light, one hour of darkness) from 1 to 3 d, and the light cycle from 4 to 42 d was 16L:8D; light intensity was 20 Lux. The results showed that the average daily feed intake and final weight of broilers receiving the B group were the highest in 21 d and 42 d compared with other groups. The average daily feed intake of the BG group was lower than that of the B group. In the same light color, small intestine villus height grows with age. On days 21 and 42, compared with other groups, the ileal villus height was higher, the crypt depth was lower, and the V/C ratio (villus to crypt ratio) was higher in the BG group. The combination of blue-green composite light was beneficial to increase the content of propionate, isobutyrate, butyrate, isovalerate, and valerate in the cecum of 21-day-old broilers and the content of isobutyrate in the cecum of 42-day-old broilers, and a decrease in cecal short-chain fatty acid concentrations with age. The B group and the BG group had higher abundances of Bacteroidetes at day 21 of age and lower abundances of Phascolarctobacterium at day 42. However, no cecal microbiota differences were detected by the Bonferroni-corrected test. In general, our research results showed that light color could promote the growth of broilers by affecting intestinal morphology, microbiota abundance (needs to be validated by further experiments), and cecal short-chain fatty acid concentrations. And blue and blue-green composite lights are more suitable for broiler growth.

9.
Microorganisms ; 11(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38137987

ABSTRACT

Escherichia albertii (E. albertii) is an emerging diarrheagenic pathogen associated with sporadic infections and human gastroenteric outbreaks. The eae gene, which encodes intimin in the locus of enterocyte effacement (LEE) operon, contributes to the establishment of the attaching and effacing (A/E) lesion. Increasing collection of E. albertii strains from various sources has resulted in a rapid increase in the number of eae subtypes. This study systematically investigated the prevalence and genetic diversity of eae among E. albertii strains isolated from humans, animals, and food. The eae gene was present in 452/459 (98.5%) strains and 23 subtypes were identified including two novel subtypes, named eae-α11 and η3. The eae-σ subtype was the most predominant among humans, animals, and food-derived strains, while eae-γ3, τ, and α11 were unique in human-derived strains. Additionally, the LEE island was also analyzed at genomic, transcriptional, and functional levels through genomic analysis, quantitative reverse transcription PCR, and HEp-2 cell adherence assays, respectively. The eae transcript levels were variable and associated with eae subtypes. Three different adherence patterns, including localized adherence-like (LAL), diffuse adherence (DA), and detachment (DE), were observed among E. albertii strains. This study demonstrated a high diversity of functional intimin in E. albertii strains isolated from humans, animals, and food. Further in vivo and in vitro studies are warranted to better elucidate the role of intimin or LEE in different genetic backgrounds.

10.
Cell Death Dis ; 14(8): 512, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558663

ABSTRACT

Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.


Subject(s)
Multiple Myeloma , Oxidative Phosphorylation , Humans , Methylation , Multiple Myeloma/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Repressor Proteins/metabolism , RNA Splicing Factors/metabolism , Cell Cycle Proteins/metabolism , NADH Dehydrogenase/metabolism
11.
Belitung Nurs J ; 9(3): 271-279, 2023.
Article in English | MEDLINE | ID: mdl-37492761

ABSTRACT

Background: The rising prevalence of chronic obstructive pulmonary disease (COPD) in China has led to a decline in the health-related quality of life (HRQOL) of employed individuals with the condition. Consequently, healthcare providers play a crucial role in identifying the factors associated with HRQOL in this population. Objectives: This study aimed to describe the HRQOL of employed individuals with COPD and determine the relationships between symptom burden, functional performance, social support, and HRQOL. Methods: A cross-sectional correlational research design was employed for this study. A total of 130 employed individuals with COPD who visited the respiratory outpatient department at the Second Affiliated Hospital of Wenzhou Medical University were selected through simple random sampling. Data were collected between August and September 2021 using a demographic questionnaire and four scales. Descriptive statistics and Pearson correlation were used for data analysis. Results: The study findings revealed that the mean HRQOL score among the participants was in the moderate range (M = 69.46, SD = 16.82). The correlation analysis revealed a significant negative association between symptom burden and HRQOL (r = -0.80, p <0.001). On the other hand, a positive relationship was observed between functional performance and HRQOL (r = 0.56, p <0.001), while social support did not show a significant relationship with HRQOL (r = 0.04, p >0.05). Conclusion: These findings serve as a foundation for healthcare service providers and policymakers in developing targeted nursing interventions and comprehensive management approaches for employed individuals with COPD. By addressing the symptom burden and promoting functional performance, nurses can strive to enhance the HRQOL of this population. Moreover, strategies to improve social support networks and facilitate access to emotional and practical assistance may further contribute to improving the overall well-being and satisfaction among employed individuals with COPD.

12.
Environ Sci Pollut Res Int ; 30(37): 86521-86539, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37418185

ABSTRACT

Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Livestock , Farms , Staphylococcus aureus , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology
13.
Animals (Basel) ; 13(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36830352

ABSTRACT

In this study, we aimed to investigate the effects of Macleaya cordata extract (MCE) supplementation on performance, nutrient apparent digestibilities, plasma metabolites, and milk quality in dairy goats. Twenty-four lactating Guanzhong dairy goats (n = 24) were randomly divided into two groups (each containing 12 goats) in a 52-day trial: the CON group was fed a basal diet; the MCE group was fed a basal diet supplemented with 400 mg/kg MCE. The results indicated that the 4% fat corrected milk yield (4% FCM); uncorrected milk yield; milk-fat concentration; content of C4:0, C18:0, and C18:1n9c fatty acids in milk; and apparent digestibility of neutral detergent fiber (NDF) and acid detergent fiber (ADF) in the MCE group were significantly higher (p < 0.05). Furthermore, the lactoferrin (LTF), alpha-lactalbumin (α-La), and beta-lactoglobulin (ß-Lg) of the milk and feed conversion rate (FCR) of the goats were significantly greater (p < 0.01) in the MCE group than in the CON group. In contrast, the somatic cell count (SCC) (p < 0.01), content of C14:0 fatty acids (p < 0.01) of milk, and blood urea nitrogen (BUN) concentrations (p < 0.05) were significantly lower in the in the MCE goats. These results show that the feeding of MCE can increase the performance and apparent nutrient digestibility of fiber in dairy goats, improving the quality of goat milk.

14.
Biomed Pharmacother ; 160: 114377, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764134

ABSTRACT

Tumor-derived total RNA (TdRNA) and cell lysate (TCL), with almost all the relevant tumor antigens, represent attractive alternative sources of antigens in antitumor immunotherapy. However, the comparison of their capacity to elicit immune responses against breast cancer is still lacking. In this study, the antitumor immune effects of TdRNA and TCL were systematically compared. We isolated TdRNA and TCL from 4T1 mouse breast cancer cells, and found that both sources of antigens could stimulate the maturation of dendritic cells (DCs) at the cellular and in vivo levels, and induce robust cellular immune responses, as evidenced by the increased percentages of both CD4+ and CD8+ T cells in the inguinal lymph nodes and spleen. But TdRNA performed stronger immunoactivities than TCL on the increase of T cell population through DCs activation. Additionally, the synergistic antitumor efficacy of paclitaxel (PTX) with TdRNA and TCL respectively was further evaluated in the murine 4T1 tumor model. Compared with TCL, TdRNA could inhibit tumor growth more effectively with low systemic toxicity when combined with PTX, which was, at least in part, attributable to the improvement of systemic immune function and tumor immune infiltration. Overall, TdRNA outperforms TCL in antitumor immunity, and is expected to be a promising candidate for application as the source of tumor antigens.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , Mice , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Immunity, Cellular , Immunotherapy , Neoplasms/drug therapy , RNA/genetics
15.
Stem Cell Rev Rep ; 19(4): 1019-1033, 2023 05.
Article in English | MEDLINE | ID: mdl-36627432

ABSTRACT

Accumulating evidence indicates that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective treatment for diabetic refractory wounds. However, the application of ADSCs to diabetic wounds is still limited, indicating that we still lack sufficient knowledge regarding regulators/mediators of ADSCs during wound healing. Rab37, a member of RabGTPase, may function as regulator of vesicle trafficking, which is a crucial event for the secretion of cytokines by ADSCs. Our previous study indicated that Rab37 promotes the adiopogenic differentiation of ADSCs. In this study, we explored the role of Rab37 in ADSC-mediated diabetic wound healing. An in vivo study in db/db diabetic mice showed that Rab37-expressing ADSCs shortened the wound closure time, improved re-epithelialization and collagen deposition, and promoted angiogenesis during wound healing. An in vitro study showed that Rab37 promoted the proliferation, migration and endothelial differentiation of ADSCs. LC-MS/MS analysis identified Hsp90α and TIMP1 as up-regulated cytokines in conditioned media of Rab37-ADSCs. The up-regulation of Rab37 enhanced the secretion of Hsp90α and TIMP1 during endothelial differentiation and under high-glucose exposure. Interestingly, Rab37 promoted the expression of TIMP1, but not Hsp90α, during endothelial differentiation. PLA showed that Rab37 can directly bind to Hsp90α orTIMP1 in ADSCs. Moreover, Hsp90α and TIMP1 knockdown compromised the promoting effects of Rab37 on the proliferation, migration and endothelial differentiation of ADSCs. In conclusion, Rab37 promotes the proliferation, migration and endothelial differentiation of ADSCs and accelerates ADSC-mediated diabetic wound healing through regulating the secretion of Hsp90α and TIMP1.


Subject(s)
Diabetes Mellitus, Experimental , Mice , Animals , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Chromatography, Liquid , Adipose Tissue , Tandem Mass Spectrometry , Wound Healing/genetics , Cell Differentiation , Cytokines/metabolism
16.
J Colloid Interface Sci ; 633: 489-499, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36463818

ABSTRACT

Developing cooling textiles with unidirectional water transport performances and high thermal conductivities is essential for personal thermal and wet comfort in human activities. We report a green, degradable, hygroscopic cooling material and dual-cooling composite fabric (d-CCF). A boron nitride nanosheet/regenerated flax fiber (BNNS/RFF) material with a high thermal conductivity was prepared by dissolving recovered flax fibers with a green, efficient 1-butyl-3-methylimidazole chloride/dimethyl sulfoxide system and adding BNNSs. The 60- wt% BNNS/RFF materials had excellent thermal conductivity and hydrophilicity, the breaking strength reached 120 MPa, and the elongation was 15.8 %. The d-CCF consisted of cool polyester (CPET) yarn (inner layer), CPET/bamboo composite yarn (middle layer), bamboo yarn, and 60- wt% BNNS/RFF (outer layer) with unobstructed heat dissipation and evaporation cooling for effective moisture and thermal management. This d-CCF had distinct advantages, including a high one-way water transport index (468 %), an extremely high evaporation rate (0.3818 g h-1), inner layer maximum heat flux (0.191 W cm-2), and outer layer maximum heat flux (0.249 W cm-2), providing a cooling sensation upon contact. Compared to cotton fabrics, the d-CCF could keep the skin cooler by 2.5 °C. This work provides a strategy to fabricate environmentally friendly BNNS/RFF materials and a facile pathway for cooling textile development for human health management.


Subject(s)
Flax , Humans , Phase Transition , Wettability , Polyesters , Water
18.
Environ Pollut ; 316(Pt 1): 120517, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36309302

ABSTRACT

The toxic effect of waterborne nanoplastics is a manifestation of bio-nano interfacial interactions. Although nanoplastics with different physicochemical characteristics are known to exhibit distinct toxicities, it remains poorly understood how the properties of nanoplastics affect the bio-nano interface interactions. Here, polystyrene nanoparticles (PSNPs) varying in size (50, 300, and 500 nm) and surface charge (negative and positive charge) were employed to explore the interplay between PSNPs and algal cells (Chlamydomonas reinhardtii), with special focus on the heteroaggregation of PSNPs and microalgae, PSNPs cellular internalization, and cellular physiological responses. Results showed that large-sized PSNPs (300 and 500 nm) caused apparent toxicity to C. reinhardtii, mainly due to light blockage resulting from the PSNPs-microalgae heteroaggregation and the shading effect of PSNPs, which was independent of PSNPs concentrations. However, the toxicity of small-sized PSNPs (50 nm) was controlled by both particle surface charge and particle concentration. The positively charged PS-NH2 was more readily heteroaggregated with microalgae than the negatively charged PS-COOH, leading to photosynthesis damage-induced toxicity. Increasing the concentration of small-sized PSNPs stimulated the secretion of extracellular polymeric substances, allowing more PSNPs to attach on the cell surface and further to enter the cell, which was responsible for the increased toxicity. These findings provide new insights into how nanoplastics induce contact toxicity in microalgae cells through specific biointerfacial interactions.


Subject(s)
Microalgae , Nanoparticles , Water Pollutants, Chemical , Microplastics , Water Pollutants, Chemical/toxicity , Polystyrenes/chemistry , Fresh Water , Nanoparticles/chemistry
19.
Front Nutr ; 9: 1018026, 2022.
Article in English | MEDLINE | ID: mdl-36466418

ABSTRACT

The purpose of this experiment was to investigate the effects of different starch and protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 160 male mice were randomly assigned to sixteen groups and fed a 4 × 4 Latin square design with dietary protein concentrations of 16, 18, 20, and 22%, and starch concentrations of 50, 52, 54, and 56%, respectively. The results of the study showed that different proportions of starch and protein had obvious effects on the liver index of mice, and there was a significant interaction between starch and protein on the liver index (p = 0.005). Compared with other protein ratio diets, 18% protein diet significantly increased the serum TBA concentration of mice (p < 0.001), and different starch ratio diets had no effect on serum TBA concentration (p = 0.442). It was proved from the results of ileal tissue HE staining that the low protein diet and the low starch diet were more favorable. There was a significant interaction between diets with different starch and protein levels on Bacteroidetes, Firmicutes and Proteobacteria abundance in feces of mice (p < 0.001). Compared with 16 and 18% protein ratio diets, both 20 and 22% protein diets significantly decreased the Parabacteroides and Alistipes abundance in feces of mice (p < 0.05), and 52% starch ratio diet significantly decreased the Parabacteroides and Alistipes abundance than 50% starch ratio diet of mice (p < 0.05). There was a significant interaction between diets with different starch and protein levels on Parabacteroides (p = 0.014) and Alistipes (p = 0.001) abundance in feces of mice. Taken together, our results suggest that a low protein and starch diet can alter lipid metabolism and gut microbes in mice.

20.
Anim Nutr ; 11: 350-358, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36329682

ABSTRACT

The purpose of this study was to investigate the effects of dietary L-theanine supplementation on apparent nutrient digestibility, milk yield, milk composition, and blood biochemical indices of dairy cows under heat stress. Thirty Chinese Holstein cows (19.84 ± 2.42 kg milk/d, 192.36 ± 40.77 d in milk and 2 ± 0.93 parities) were divided into 3 groups of 10 animals each. The control group was fed a basal total mixed ration (TMR) diet, while treatment 1 (LTA16) and treatment 2 (LTA32) groups were fed a basal TMR diet supplemented with L-theanine at 16 and 32 g/cow per day, respectively. The results showed that feeding the dairy cows with LTA16 treatment decreased (P < 0.05) their rectal temperature, whereas feeding with LTA32 treatment decreased (P < 0.05) their rumen fluid ammonia nitrogen content. In comparison to the control group, the supplementation of L-theanine had no significant effect (P > 0.05) on the dry matter intake, nutrient digestibility, total volatile fatty acid (TVFA) concentration and molar proportion of volatile fatty acid, milk yield, milk composition, feed efficiency and antioxidant capacity of the dairy cows. The triglyceride (TG) content of the LTA32 group was significantly greater (P = 0.014) than that of the control group. With the increase in L-theanine dosage, the serum cholesterol (CHOL) content significantly increased (P = 0.013). The serum albumin (ALB; P = 0.067), low-density lipoprotein cholesterol (LDL-C; P = 0.053), and high-density lipoprotein cholesterol (HDL-C; P = 0.067) contents showed an upward trend as L-theanine dosage increased. Ultimately, the results of this study show that supplementing dairy cow diet with L-theanine could decrease dairy cow rectal temperature, affect lipid metabolism, and potentially relieve the heat stress of dairy cows to some extent.

SELECTION OF CITATIONS
SEARCH DETAIL
...