Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 482
Filter
1.
Article in English | MEDLINE | ID: mdl-38954482

ABSTRACT

BACKGROUND: Support programs for self-management are under-utilized among people with chronic kidney disease (CKD). We examined the feasibility of a smartphone-based intervention to support physical activity and blood pressure monitoring, Supporting Self-Management of Healthy Behaviors (SMART-HABITS), for individuals with CKD and hypertension. METHODS: SMART-HABITS was piloted in a 12-week randomized cross-over trial among people with CKD and hypertension. Participants were asked to monitor blood pressure ≥3-times/week and step counts ≥5-times/week. Participants were randomized to blood pressure communication approach-self-report through text message for six weeks vs. automatic reporting with a smartphone application (app) paired to a Bluetooth enabled blood pressure machine for the alternate six weeks. The approach to monitoring and reporting steps was the same during both phases. Primary outcomes were adoption (retention and use of SMART-HABITS dashboard), adherence (% of transmitted blood pressure and step counts), and acceptability as assessed with surveys and interviews. Secondary outcomes were reach, maintenance, CKD knowledge, digital health literacy, self-management, self-efficacy, quality of life, step counts and blood pressure values. Interviews were conducted at study end. RESULTS: Of the 47 randomized participants, 44 (94%) completed the Text phase and 43 (92%) completed the App phase. Median age was 63 years, 49% were female, and 45% were Black. Retention was 91%. Blood pressure adherence was 87% in the Text phase and 74% in the App phase, and step count adherence was 97%. Acceptability scores were high and interviews largely conveyed acceptance. CKD knowledge increased but remaining survey scores did not change. Mean step counts increased from the pre-study period similarly in both phases. Blood pressure did not change over time. CONCLUSION: Implementing a smartphone support tool for self-management was feasible among people with CKD and hypertension. The approach can supplement clinic-based care and potentially lead to less cardiovascular disease and CKD progression.

2.
Opt Lett ; 49(13): 3806-3809, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950276

ABSTRACT

Current non-confocal non-line-of-sight (NLOS) imaging faces the problems of low resolution and limited scene adaptability. We propose a non-confocal NLOS imaging method based on spherical-slice transform from spatial and temporal frequency to space and time. Simulation and experimental results show that the proposed method has high-resolution reconstruction without artifact interference, shape distortion, and position offset. Furthermore, it has strong scene adaptability. After GPU acceleration, the reconstruction time of the proposed method can be reduced to several hundred milliseconds for the PF32 photon array camera with 32 × 32 detection units. In the future, the proposed method has great potential for application in real-time NLOS imaging systems.

3.
Sci Rep ; 14(1): 15033, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951568

ABSTRACT

The application of terahertz time-domain spectroscopy (THz-TDS) in the quantitative analysis of major minerals in Bayan Obo magnetite ore was explored. The positive correlation between the optical parameters of the original ore and its iron content is confirmed. The detections of three main iron containing minerals, including magnetite, pyrite, and hematite, were simulated using corresponding reagents. The random forest algorithm is used for quantitative analysis, and FeS2 is detected with precision of R2 = 0.7686 and MAE = 0.6307% in ternary mixtures. The experimental results demonstrate that THz-TDS can distinguish specific iron containing minerals and reveal the potential application value of this testing method in exploration and mineral processing fields.

4.
Biosens Bioelectron ; 261: 116514, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908291

ABSTRACT

Thyroid cancer always appears insidiously with few noticeable clinical symptoms. Due to its limitations, conventional ultrasound imaging can lead to missed or misdiagnosed cases. Surgery is still the primary treatment method of thyroid cancer, but removal of surrounding healthy tissues to minimize recurrence leads to overtreatment and added patient suffering. To address this challenge, herein, a nitroreductase (NTR) fluorescent probe, Ox-NTR, has been developed for detecting thyroid cancer and tracking the surgical removal of thyroid tumors by fluorescence imaging. The conjugated structure of oxazine 1 was disrupted, significantly reducing the issue of high background signals, thus effectively achieving low background fluorescence. Under hypoxic conditions, the nitro group of Ox-NTR can be reduced to an amine and subsequently decomposed into oxazine 1, emitting intense red fluorescence. Ox-NTR has a low detection limit of 0.09 µg/mL for NTR with excellent photostability and selectivity. Cellular studies show that Ox-NTR can effectively detect NTR levels in hypoxic thyroid cancer cells. Moreover, the ability of Ox-NTR of rapid response to thyroid cancer in vivo is confirmed by fluorescence imaging in mice, distinguishing tumors from normal tissues due to its superior low background fluorescence. Utilizing this fluorescence imaging method during surgical resection can guide the removal of tumors, preventing both missed tumor tissues and accidental removal of healthy tissue. In summary, the novel Ox-NTR offers precise detection capabilities that provide significant advantages over traditional imaging methods for thyroid cancer diagnosis and treatment, making it a valuable tool to guide tumor removal in surgical procedures.


Subject(s)
Fluorescent Dyes , Nitroreductases , Optical Imaging , Thyroid Neoplasms , Nitroreductases/metabolism , Fluorescent Dyes/chemistry , Thyroid Neoplasms/surgery , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Humans , Animals , Optical Imaging/methods , Mice , Biosensing Techniques/methods , Cell Line, Tumor , Surgery, Computer-Assisted/methods , Mice, Nude
5.
J Control Release ; 372: 403-416, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914207

ABSTRACT

The immunosuppressive microenvironment of malignant tumors severely hampers the effectiveness of anti-tumor therapy. Moreover, abnormal tumor vasculature interacts with immune cells, forming a vicious cycle that further interferes with anti-tumor immunity and promotes tumor progression. Our pre-basic found excellent anti-tumor effects of c-di-AMP and RRx-001, respectively, and we further explored whether they could be combined synergistically for anti-tumor immunotherapy. We chose to load these two drugs on PVA-TSPBA hydrogel scaffolds that expressly release drugs within the tumor microenvironment by in situ injection. Studies have shown that c-di-AMP activates the STING pathway, enhances immune cell infiltration, and reverses tumor immunosuppression. Meanwhile, RRx-001 releases nitric oxide, which increases oxidative stress injury in tumor cells and promotes apoptosis. Moreover, the combination of the two presented more powerful pro-vascular normalization and reversed tumor immunosuppression than the drug alone. This study demonstrates a new design option for anti-tumor combination therapy and the potential of tumor environmentally responsive hydrogel scaffolds in combination with anti-tumor immunotherapy.

6.
Arthrosc Tech ; 13(5): 102950, 2024 May.
Article in English | MEDLINE | ID: mdl-38835465

ABSTRACT

Acetabular cartilage delamination is commonly seen in patients with femoroacetabular impingement (FAI), especially ones with the cam deformity. However, the definition and classification of acetabular cartilage injuries caused by FAI to guide clinical treatment remain controversial. Moreover, treatment of acetabular cartilage damage always causes a dilemma for surgeon during surgery. We believe a reliable repair of the acetabular cartilage delamination will lead to a better long-term outcome for patients with FAI. In this Technical Note, we introduce the chondral nail fixation under hip arthroscopy for treating acetabular cartilage delamination in patients with FAI. This technique contributes to eliminating intra-articular unstable factors, preserving native cartilage as much as possible, and restoring cartilage surface intact at best.

7.
medRxiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38854006

ABSTRACT

Sepsis is the leading postnatal cause of neonatal mortality worldwide. Globally Klebsiella pneumoniae is the leading cause of sepsis in hospitalized neonates. This study reports development and evaluation of ELISA for anti-Klebsiella IgG using dried blood spot samples and evaluates the association of anti-Klebsiella IgG (anti-Kleb IgG) antibodies in maternal and neonatal samples and the risk of neonatal sepsis. Neonates and their mothers were enrolled at 0-96 hours of life in the neonatal unit of a tertiary referral hospital in Gaborone, Botswana and followed until death or discharge to assess for episodes of blood culture-confirmed neonatal sepsis. Neonates with sepsis had significantly lower levels of Kleb-IgG compared to neonates who did not develop sepsis (Mann-Whitney U, p=0.012). Similarly, samples from mothers of neonates who developed sepsis tended to have less Kleb-IgG compared to mothers of controls (p=0.06). The inverse correlation between Kleb-IgG levels and all-cause bacteremia suggests that maternal Kleb-IgG is broadly protective through cross-reactivity with common bacterial epitopes. These data support the continued use of immunoglobulin assays using DBS samples to explore the role of passive immunity on neonatal sepsis risk and reaffirm the critical need for research supporting the development of maternal vaccines for neonatal sepsis.

8.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892138

ABSTRACT

Salinity stress has a great impact on crop growth and productivity and is one of the major factors responsible for crop yield losses. The K-homologous (KH) family proteins play vital roles in regulating plant development and responding to abiotic stress in plants. However, the systematic characterization of the KH family in rice is still lacking. In this study, we performed genome-wide identification and functional analysis of KH family genes and identified a total of 31 KH genes in rice. According to the homologs of KH genes in Arabidopsis thaliana, we constructed a phylogenetic tree with 61 KH genes containing 31 KH genes in Oryza sativa and 30 KH genes in Arabidopsis thaliana and separated them into three major groups. In silico tissue expression analysis showed that the OsKH genes are constitutively expressed. The qRT-PCR results revealed that eight OsKH genes responded strongly to salt stresses, and OsKH12 exhibited the strongest decrease in expression level, which was selected for further study. We generated the Oskh12-knockout mutant via the CRISPR/Cas9 genome-editing method. Further stress treatment and biochemical assays confirmed that Oskh12 mutant was more salt-sensitive than Nip and the expression of several key salt-tolerant genes in Oskh12 was significantly reduced. Taken together, our results shed light on the understanding of the KH family and provide a theoretical basis for future abiotic stress studies in rice.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Oryza , Phylogeny , Plant Proteins , Salt Stress , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Salt Stress/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Arabidopsis/genetics , Stress, Physiological/genetics
9.
Bioact Mater ; 39: 287-301, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38827170

ABSTRACT

Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.

10.
Appl Opt ; 63(16): 4251, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856600

ABSTRACT

This publisher's note serves to correct errors in Appl. Opt.63, 2528 (2024)APOPAI0003-693510.1364/AO.517400.

11.
Nat Commun ; 15(1): 4877, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849342

ABSTRACT

In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.


Subject(s)
DNA Transposable Elements , Ethylenes , Flowers , Gene Expression Regulation, Plant , Plant Proteins , DNA Transposable Elements/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Signal Transduction/genetics , Cucumis melo/genetics , Cucumis melo/metabolism , Fruit/genetics , Fruit/growth & development , Mutation
12.
Cell Signal ; 121: 111262, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901722

ABSTRACT

Many solid tumors frequently overexpress Non-SMC Condensin I Complex Subunit H (NCAPH), and new studies suggest that NCAPH may be a target gene for clinical cancer therapy. Numerous investigations have shown that a variety of transcription factors, including as MYBL2, FOXP3, GATA3, and OTC1, can stimulate the transcription of NCAPH. Additionally, NCAPH stimulates many oncogenic signaling pathways, such as ß-Catenin/PD-L1, PI3K/AKT/SGK3, MEK/ERK, AURKB/AKT/mTOR, PI3K/PDK1/AKT, and Chk1/Chk2. Tumor immune microenvironment modification and tumor growth, apoptosis, metastasis, stemness, and treatment resistance all depend on these signals. NCAPH has the ability to form complexes with other proteins that are involved in glycolysis, DNA damage repair, and chromatin remodeling. This review indicates that NCAPH expression in most malignant tumors is associated with poor prognosis and low recurrence-free survival.

13.
Sci Rep ; 14(1): 14300, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906967

ABSTRACT

We aim to explore the alterations of objective ocular torsion after unilateral lateral rectus recession-medial rectus resection (R&R) for intermittent exotropia (IXT). Seventy-two IXT patients undergoing R&R between March and June 2023 were enrolled. Ophthalmological examinations were performed before surgery and at 1 week and 1 month after surgery, mainly including prism and alternate cover test and optical coherence tomography. The mean disc-foveal angle of eyes showing intorsion significantly increased from - 1.5 ± 0.9° preoperatively to 2.0 ± 2.0° at 1 week (P = 0.0227) and 2.2 ± 1.6° at 1 month postoperatively (P = 0.0054). The mean disc-foveal angle of eyes exhibiting extorsion significantly reduced from 12.8 ± 1.9° preoperatively to 9.8 ± 3.1° at 1 week (P < 0.0001) and 9.7 ± 2.7° at 1 month postoperatively (P < 0.0001). The improvement of ocular extorsion at postoperative 1 month was more pronounced in patients with extorsion in operative eye compared to those with extorsion in inoperative eye (P = 0.0101). The improvement of ocular torsion was observed following R&R for IXT, with a greater effect noted in cases where the surgery was performed on the eye exhibiting extorsion.


Subject(s)
Exotropia , Oculomotor Muscles , Ophthalmologic Surgical Procedures , Humans , Exotropia/surgery , Male , Female , Oculomotor Muscles/surgery , Child , Ophthalmologic Surgical Procedures/methods , Ophthalmologic Surgical Procedures/adverse effects , Child, Preschool , Adolescent , Tomography, Optical Coherence , Adult , Torsion Abnormality/surgery , Torsion Abnormality/etiology , Young Adult , Treatment Outcome
14.
Exploration (Beijing) ; 4(3): 20230090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939861

ABSTRACT

Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.

15.
Eur Heart J ; 45(24): 2158-2166, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38768958

ABSTRACT

BACKGROUND AND AIMS: In recent decades, nighttime temperatures have increased faster than daytime temperatures. The increasing prevalence of nocturnal heat exposure may pose a significant risk to cardiovascular health. This study investigated the association between nighttime heat exposure and stroke risk in the region of Augsburg, Germany, and examined its temporal variations over 15 years. METHODS: Hourly meteorological parameters, including mean temperature, relative humidity, and barometric pressure, were acquired from a local meteorological station. A data set was obtained consisting of 11 037 clinical stroke cases diagnosed during warmer months (May to October) between the years 2006 and 2020. The average age of cases was 71.3 years. Among these cases, 642 were identified as haemorrhagic strokes, 7430 were classified as ischaemic strokes, and 2947 were transient ischaemic attacks. A time-stratified case-crossover analysis with a distributed lag non-linear model was used to estimate the stroke risk associated with extreme nighttime heat, as measured by the hot night excess (HNE) index after controlling for the potential confounding effects of daily maximum temperature and other climatic variables. Subgroup analyses by age group, sex, stroke subtype, and stroke severity were performed to identify variations in susceptibility to nighttime heat. RESULTS: Results suggested a significant increase in stroke risk on days with extreme nighttime heat (97.5% percentile of HNE) (odds ratio 1.07, 95% confidence interval 1.01-1.15) during the full study period. When comparing the results for 2013-20 with the results for 2006-12, there was a significant increase (P < .05) in HNE-related risk for all strokes and specifically for ischaemic strokes during the more recent period. Furthermore, older individuals, females, and patients with mild stroke symptoms exhibited a significantly increased vulnerability to nighttime heat. CONCLUSIONS: This study found nocturnal heat exposure to be related to elevated stroke risk after controlling for maximum daytime temperature, with increasing susceptibility between 2006 and 2020. These results underscore the importance of considering nocturnal heat as a critical trigger of stroke events in a warming climate.


Subject(s)
Hot Temperature , Stroke , Humans , Male , Aged , Female , Middle Aged , Germany/epidemiology , Stroke/epidemiology , Stroke/etiology , Hot Temperature/adverse effects , Risk Factors , Aged, 80 and over , Ischemic Stroke/epidemiology , Ischemic Stroke/etiology , Ischemic Attack, Transient/epidemiology , Ischemic Attack, Transient/etiology , Environmental Exposure/adverse effects
16.
Cancer Epidemiol ; 91: 102585, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815483

ABSTRACT

BACKGROUND: Trachea, bronchus, and lung (TBL) cancer has demonstrated a discernible feminization and a tendency towards younger onset in recent decades. Therefore, our objective is to examine the most recent patterns in the worldwide prevalence of TBL among women of reproductive age on a global, regional, and national scale. METHODS: To assess the prevalence trends of TBL in women of reproductive age, we calculated the estimated annual percentage change (EAPC), age-standardized incidence rate (ASIR), age-standardized death rate (ASDR), and disability-adjusted life years (DALYs) for 204 countries and territories from 1990 to 2019. These calculations were based on the Global Burden of Disease (GBD) 2019 database. RESULTS: From 1990 to 2019, there was a global increase in the absolute number of incidence cases, deaths, and DALYs of TBL in women of reproductive age. However, the ASIR, ASDR, and age-standardized DALY rates were decreasing over this period, with EAPC of -0.77 (95 % confidence interval [CI]: -1.03 to -0.51), -1.08 (95 % CI: -1.34 to -0.82), and -1.10 (95 % CI: -1.36 to -0.84), respectively. This trend was observed even in regions with higher Socio-Demographic Index (SDI). East Asia consistently had the highest ASIR, ASDR, and age-standardized DALY rate, but there was a decreasing trend. Conversely, Eastern Sub-Saharan Africa displayed an increasing burden pattern. When examining countries individually, Monaco, Greenland, and Palau had the highest ASIR. Moreover, in most countries, the ASIR for TBL increased with age, particularly among women aged 35-49 years. CONCLUSIONS: Despite a global decline in ASIR, ASDR, and age-standardized DALY rates for TBL in women of reproductive age over the past three decades, there is still a troubling increase observed in low- and low-middle SDI regions. It is crucial to implement effective preventive and curative measures in these regions in order to address this concerning trend.

17.
Zhen Ci Yan Jiu ; 49(5): 506-511, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764122

ABSTRACT

OBJECTIVES: To observe the effect of scalp-abdominal acupuncture combined with donepezil hydrochloride on cognition and life ability of patients with Alzheimer's disease (AD), so as to evaluate its clinical efficacy. METHODS: Sixty AD patients were collected and randomly divided into control group (30 cases) and observation group (30 cases). Patients in the control group were treated with oral donepezil hydrochloride (5 mg, once daily). Patients in the observation group were treated with scalp-abdominal acupuncture at Baihui (GV20), Yintang (GV24+), Sishencong (EX-HN1), "emotional area", Shenting (GV24), "abdominal area 1""abdominal area 8", and bilateral Fengchi (GB20), Taixi (KI3), Xuanzhong (GB39), Zusanli (ST36) on the basis of control group, and electroacupuncture (10 Hz/50 Hz, 0.5 to 5.0 mA) was applied to EX-HN1, "emotional area""abdominal area 1" and "abdominal area 8", once daily, 30 min each time. Four weeks as a course of treatment, both the two groups were treated for two consecutive courses. Before and after treatment, the mini-mental state examination (MMSE), AD assessmennt scale-cognitive subscale (ADAS-Cog) and activity of daily living scale (ADL) were evaluated. The clinical efficacy index was calculated and safety was evaluated. RESULTS: After treatment, the MMSE and ADL scores were higher (P<0.05) and the ADAS-Cog score was lower (P<0.05) than those before treatment in both groups. Compared with the control group, the MMSE and ADL scores were increased (P<0.05) and ADAS-Cog score was decreased (P<0.05) in the observation group. The total effective rate of the observation group (26/30, 86.67%) was higher (P<0.05) than that of the control group (23/30, 76.67%). No adverse reactions occurred in both groups during the treatment. CONCLUSIONS: Scalp-abdominal acupuncture combined with donepezil hydrochloride can effectively improve the cognitive ability and daily living ability of AD patients, and the efficacy is better than that of oral donepezil hydrochloride alone.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Alzheimer Disease , Donepezil , Scalp , Humans , Donepezil/therapeutic use , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Female , Male , Aged , Abdomen , Middle Aged , Cognition/drug effects , Treatment Outcome , Piperidines/therapeutic use , Combined Modality Therapy , Aged, 80 and over , Indans/therapeutic use
18.
Physiol Plant ; 176(3): e14329, 2024.
Article in English | MEDLINE | ID: mdl-38695156

ABSTRACT

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Triticum , Photosynthesis/physiology , Triticum/physiology , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Plant Leaves/physiology , Plant Leaves/metabolism , Adaptation, Physiological , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
19.
ACS Appl Mater Interfaces ; 16(21): 27668-27683, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748922

ABSTRACT

Micro/nanomotors (MNMs) are miniature devices that can generate energy through chemical reactions or physical processes, utilizing this energy for movement. By virtue of their small size, self-propulsion, precise positioning within a small range, and ability to access microenvironments, MNMs have been applied in various fields including sensing, biomedical applications, and pollutant adsorption. However, the development of food-grade MNMs and their application in food delivery systems have been scarcely reported. Currently, there are various issues with the decomposition, oxidation, or inability to maintain the activity of some nutrients or bioactive substances, such as the limited application of curcumin (Cur) in food. Compared to traditional delivery systems, MNMs can adjust the transport speed and direction as needed, effectively protecting bioactive substances during delivery and achieving efficient transportation. Therefore, this study utilizes polysaccharides as the substrate, employing a simple, rapid, and pollution-free template method to prepare polysaccharide-based microtubes (PMTs) and polysaccharide-based micro/nanomotors (PMNMs). PMNMs can achieve multifunctional propulsion by modifying ferrosoferric oxide (Fe3O4), platinum (Pt), and glucose oxidase (GOx). Fe-PMNMs and Pt-PMNMs exhibit excellent photothermal conversion performance, showing promise for applications in photothermal therapy. Moreover, PMNMs can effectively deliver curcumin, achieving the effective delivery of nutrients and exerting the anti-inflammatory performance of the system.


Subject(s)
Curcumin , Polysaccharides , Curcumin/chemistry , Polysaccharides/chemistry , Animals , Mice , Platinum/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Ferrosoferric Oxide/chemistry , Humans , Food Ingredients/analysis
20.
Planta ; 259(6): 151, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733553

ABSTRACT

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Plant Roots , Stress, Physiological , Tetraploidy , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Triticum/physiology , Nitrogen/metabolism , Stress, Physiological/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/physiology , Adaptation, Physiological/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...