Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Front Oncol ; 14: 1409273, 2024.
Article in English | MEDLINE | ID: mdl-38947897

ABSTRACT

Objective: This study aims to develop an artificial intelligence model utilizing clinical blood markers, ultrasound data, and breast biopsy pathological information to predict the distant metastasis in breast cancer patients. Methods: Data from two medical centers were utilized, Clinical blood markers, ultrasound data, and breast biopsy pathological information were separately extracted and selected. Feature dimensionality reduction was performed using Spearman correlation and LASSO regression. Predictive models were constructed using LR and LightGBM machine learning algorithms and validated on internal and external validation sets. Feature correlation analysis was conducted for both models. Results: The LR model achieved AUC values of 0.892, 0.816, and 0.817 for the training, internal validation, and external validation cohorts, respectively. The LightGBM model achieved AUC values of 0.971, 0.861, and 0.890 for the same cohorts, respectively. Clinical decision curve analysis showed a superior net benefit of the LightGBM model over the LR model in predicting distant metastasis in breast cancer. Key features identified included creatine kinase isoenzyme (CK-MB) and alpha-hydroxybutyrate dehydrogenase. Conclusion: This study developed an artificial intelligence model using clinical blood markers, ultrasound data, and pathological information to identify distant metastasis in breast cancer patients. The LightGBM model demonstrated superior predictive accuracy and clinical applicability, suggesting it as a promising tool for early diagnosis of distant metastasis in breast cancer.

2.
Sci Rep ; 14(1): 15561, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969798

ABSTRACT

Breast cancer metastasis significantly impacts women's health globally. This study aimed to construct predictive models using clinical blood markers and ultrasound data to predict distant metastasis in breast cancer patients, ensuring clinical applicability, cost-effectiveness, relative non-invasiveness, and accessibility of these models. Analysis was conducted on data from 416 patients across two centers, focusing on clinical blood markers (tumor markers, liver and kidney function indicators, blood lipid markers, cardiovascular biomarkers) and maximum lesion diameter from ultrasound. Feature reduction was performed using Spearman correlation and LASSO regression. Two models were built using LightGBM: a clinical model (using clinical blood markers) and a combined model (incorporating clinical blood markers and ultrasound features), validated in training, internal test, and external validation (test1) cohorts. Feature importance analysis was conducted for both models, followed by univariate and multivariate regression analyses of these features. The AUC values of the clinical model in the training, internal test, and external validation (test1) cohorts were 0.950, 0.795, and 0.883, respectively. The combined model showed AUC values of 0.955, 0.835, and 0.918 in the training, internal test, and external validation (test1) cohorts, respectively. Clinical utility curve analysis indicated the combined model's superior net benefit in identifying breast cancer with distant metastasis across all cohorts. This suggests the combined model's superior discriminatory ability and strong generalization performance. Creatine kinase isoenzyme (CK-MB), CEA, CA153, albumin, creatine kinase, and maximum lesion diameter from ultrasound played significant roles in model prediction. CA153, CK-MB, lipoprotein (a), and maximum lesion diameter from ultrasound positively correlated with breast cancer distant metastasis, while indirect bilirubin and magnesium ions showed negative correlations. This study successfully utilized clinical blood markers and ultrasound data to develop AI models for predicting distant metastasis in breast cancer. The combined model, incorporating clinical blood markers and ultrasound features, exhibited higher accuracy, suggesting its potential clinical utility in predicting and identifying breast cancer distant metastasis. These findings highlight the potential prospects of developing cost-effective and accessible predictive tools in clinical oncology.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoplasm Metastasis , Humans , Breast Neoplasms/blood , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Female , Biomarkers, Tumor/blood , Middle Aged , Adult , Ultrasonography/methods , Aged
3.
Angew Chem Int Ed Engl ; : e202405891, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769062

ABSTRACT

Organic solvent nanofiltration (OSN) plays important roles in pharmaceutical ingredients purification and solvent recovery. However, the low organic solvent permeance under cross-flow operation of OSN membrane hampers their industrial applications. Herein, we report the construction of coffee-ring structured membrane featuring high OSN permeance. A water-insoluble crystal monomer that dissolved in EtOH/H2O mixed solvent was designed to react with trimesoyl chloride via interfacial polymerization. Owing to the diffusion of EtOH to n-hexane, coffee-ring nanostructure on the support membrane appeared, which served as the template for construction of coffee-ring structured membrane. The optimal nanostructured membrane demonstrated 2.6-fold enhancement in the effective surface area with reduced membrane thickness. Resultantly, the membrane afforded a 2.7-fold enhancement in organic solvent permeance, e.g., ~13 LMH/bar for MeOH, without sacrificing the rejection ability. Moreover, due to the rigid monomer structure, the fabricated membrane shows distinctive running stability in active pharmaceutical ingredients purification and the ability for concentration of medicines.

4.
J Tissue Viability ; 33(3): 487-503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38769034

ABSTRACT

Severe bacterial infections can give rise to protracted wound healing processes, thereby posing a significant risk to a patient's well-being. Consequently, the development of a versatile hydrogel dressing possessing robust bioactivity becomes imperative, as it holds the potential to expedite wound healing and yield enhanced clinical therapeutic outcomes. In this context, the present study involves the formulation of an injectable multifunctional hydrogel utilizing laponite (LAP) and lactoferrin (LF) as foundational components and loaded with eugenol (EG). This hydrogel is fabricated employing a straightforward one-pot mixing approach that leverages the principle of electrostatic interaction. The resulting LAP/LF/EG2% composite hydrogel can be conveniently injected to address irregular wound geometries effectively. Once administered, the hydrogel continually releases lactoferrin and eugenol, mitigating unwarranted oxidative stress and eradicating bacterial infections. This orchestrated action culminates in the acceleration of wound healing specifically in the context of MRSA-infected wounds. Importantly, the LAP/LF/EG2% hydrogel exhibits commendable qualities including exceptional injectability, potent antioxidant attributes, and proficient hemostatic functionality. Furthermore, the hydrogel composition notably encourages cellular migration while maintaining favorable cytocompatibility. Additionally, the hydrogel manifests noteworthy bactericidal efficacy against the formidable multidrug-resistant MRSA bacterium. Most significantly, this hydrogel formulation distinctly expedites the healing of MRSA-infected wounds by promptly inducing hemostasis, curbing bacterial proliferation, and fostering angiogenesis, collagen deposition, and re-epithelialization processes. As such, the innovative hydrogel material introduced in this investigation emerges as a promising dressing for the facilitation of bacterial-infected wound healing and consequent tissue regeneration.


Subject(s)
Eugenol , Hydrogels , Lactoferrin , Methicillin-Resistant Staphylococcus aureus , Silicates , Wound Healing , Wound Healing/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Silicates/pharmacology , Silicates/therapeutic use , Hydrogels/pharmacology , Hydrogels/therapeutic use , Eugenol/pharmacology , Eugenol/therapeutic use , Lactoferrin/pharmacology , Lactoferrin/therapeutic use , Lactoferrin/administration & dosage , Humans , Animals , Rats , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage
5.
Front Psychol ; 15: 1326237, 2024.
Article in English | MEDLINE | ID: mdl-38633873

ABSTRACT

Introduction: The Internet has triggered a series of online deviant behaviors, and cyberbullying is one of them. Cyberbullying victimization as a category of frustration and the aggression triggered by it has been confirmed by many studies. Previous studies have explored the relationship between cyberbullying victimization and cyberbullying perpetration. However, the boundary conditions of the two have yet to be sufficiently explored, and this article will further explore the moderating effect in the transformation mechanism. Methods: The convenience sampling method was used to select a cumulative total of 668 students from university students of several universities in Beijing for the study, using questionnaires including Cyberbullying Victimization Questionnaire, Cyberbullying Perpetration Questionnaire, the Callous-unemotional Traits Scale, and Internet Morality Questionnaire. Results: (1) Controlling for gender and grade, cyberbullying victimization has a positive relationship with cyberbullying perpetration. (2) Callous-unemotional traits moderated the relationship between cyberbullying victimization and perpetration. (3) Internet morality can moderate the relationship between cyberbullying victimization and perpetration. (4) Callous-unemotional traits and Internet morality can co-regulate the relationship between cyberbullying victimization and perpetration. Conclusion: The results indicate that cyberbullying victimization had a significant positive relationship with cyberbullying perpetration, a process moderated by callous-unemotional traits and Internet morality.

6.
J Med Chem ; 67(8): 6064-6080, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38595098

ABSTRACT

It has been shown that PRMT5 inhibition by small molecules can selectively kill cancer cells with homozygous deletion of the MTAP gene if the inhibitors can leverage the consequence of MTAP deletion, namely, accumulation of the MTAP substrate MTA. Herein, we describe the discovery of TNG908, a potent inhibitor that binds the PRMT5·MTA complex, leading to 15-fold-selective killing of MTAP-deleted (MTAP-null) cells compared to MTAPintact (MTAP WT) cells. TNG908 shows selective antitumor activity when dosed orally in mouse xenograft models, and its physicochemical properties are amenable for crossing the blood-brain barrier (BBB), supporting clinical study for the treatment of both CNS and non-CNS tumors with MTAP loss.


Subject(s)
Antineoplastic Agents , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Brain/metabolism , Structure-Activity Relationship
7.
Chem Commun (Camb) ; 60(30): 4100-4103, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38516825

ABSTRACT

Through metal-site anchoring, metal-organic frameworks (MOFs) were modified with ionic liquids (ILs) and used as a porous filler to prepare mixed-matrix membranes (MMMs). The targeted growth of the IL exposed more active sites and greatly enhanced CO2 transfer in the MMMs, which exhibited excellent gas separation performance and long durability.

8.
Small ; 20(26): e2311802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258398

ABSTRACT

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.


Subject(s)
Nanofibers , Polymers , Potassium , Pyrroles , Wearable Electronic Devices , Nanofibers/chemistry , Pyrroles/chemistry , Polymers/chemistry , Potassium/chemistry , Potassium/analysis , Humans , Biosensing Techniques/methods , Electrons , Ions , Sweat/chemistry , Electric Conductivity
9.
Exp Aging Res ; 50(2): 225-247, 2024.
Article in English | MEDLINE | ID: mdl-38192191

ABSTRACT

Empathy, the ability to understand and respond to the experiences of others, is an important skill for maintaining good relationships throughout one's life. Previous research indicated that emotional empathy remained stable or even increased in older adults compared to younger adults, while cognitive empathy showed age-related deficits. Based on the selective engagement hypothesis, this deficit was not caused by a decline in cognitive functioning, but by a lack of willingness to judge the target person's emotions more precisely, that is, by a lack of interaction motivation. In order to provide more evidence on the causes of empathic aging in older adults, the current study investigated the influence of interaction motivation on empathy in older adults in an Eastern cultural context (China) based on the selective engagement hypothesis. This study used older adults and younger adults as subjects. Through two experiments, empathy was measured by the multiple empathy test (Experiment 1) and film tasks (Experiment 2); at the same time, use accountability instructions (Experiment 1), the age-related events (Experiment 2) to manipulate interaction motivation. The results showed that emotional empathy was significantly higher in older adults than in younger adults, regardless of whether interaction motivation was elicited. In terms of cognitive empathy, when there is no motivation, the cognitive empathy of older adults is significantly lower than that of younger adults. When the interaction motivation is stimulated, the cognitive empathy of older adults is no less than that of younger adults. This suggested that empathic aging in older adults was not a permanent decline in cognitive empathy, but rather a decline in interaction motivation, supporting the selective engagement hypothesis.


Subject(s)
Empathy , Motivation , Humans , Aged , Aging , Emotions , Cognition
10.
J Agric Food Chem ; 72(2): 1376-1390, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165648

ABSTRACT

The coverage of the protein database directly determines the results of shotgun proteomics. In this study, PacBio single-molecule real-time sequencing technology was performed on postmortem silver carp muscle transcripts. A total of 42.43 Gb clean data, 35,834 nonredundant transcripts, and 15,413 unigenes were obtained. In total, 99.32% of the unigenes were successfully annotated and assigned specific functions. PacBio long-read isoform sequencing (Iso-Seq) analysis can provide more accurate protein information with a higher proportion of complete coding sequences and longer lengths. Subsequently, 2671 proteins were identified in deep 4D proteomics informed by a full-length transcriptomics technique, which has been shown to improve the identification of low-abundance muscle proteins and potential protein isoforms. The feature of the sarcomeric protein profile and information on more than 30 major proteins in the white dorsal muscle of silver carp were reported here for the first time. Overall, this study provides valuable transcriptome data resources and the comprehensive muscle protein information detected to date for further study into the processing characteristic of early postmortem fish muscle, as well as a spectral library for data-independent acquisition and data processing. This batch of muscle-specific dependent acquisition data is available via PRIDE with identifier PXD043702.


Subject(s)
Carps , Transcriptome , Animals , Proteomics , Proteome/genetics , Carps/genetics , Protein Isoforms/genetics , Muscles
11.
Psychopathology ; 57(2): 111-122, 2024.
Article in English | MEDLINE | ID: mdl-37647878

ABSTRACT

INTRODUCTION: Adolescents with major depressive disorder (MDD) exhibit hypoactivity to positive stimuli and hyperactivity to negative stimuli in terms of neural responses. Automatic emotion regulation (AER) activates triple networks (i.e., the central control network, default mode network, and salience network). Based on previous studies, we hypothesized that adolescents with MDD exhibit dissociable spatiotemporal deficits during positive and negative AER. METHODS: We first collected EEG data from 32 adolescents with MDD and 35 healthy adolescents while they performed an implicit emotional Go/NoGo task. Then, we characterized the spatiotemporal dynamics of cortical activity during AER. RESULTS: In Go trials, MDD adolescents exhibited reduced N2 amplitudes, enhanced theta power for positive pictures, and stronger bottom-up information flow from the left orbitofrontal cortex (OFC) to the right superior frontal gyrus compared to top-down information flow than the controls. In contrast, in NoGo trials, MDD adolescents exhibited elevated P3 amplitudes, enhanced theta power, and stronger top-down information flows from the right middle frontal gyrus to the right OFC and the left insula than the controls. CONCLUSION: Overall, adolescents with MDD exhibited impaired automatic attention to positive emotions and impaired automatic response inhibition. These findings have potential implications for the clinical treatment of adolescents with MDD.


Subject(s)
Depressive Disorder, Major , Emotional Regulation , Humans , Adolescent , Depressive Disorder, Major/psychology , Emotions/physiology , Magnetic Resonance Imaging
12.
Angew Chem Int Ed Engl ; 63(4): e202316315, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38030580

ABSTRACT

Covalent organic framework (COF) membranes featuring uniform topological structures and devisable functions, show huge potential in water purification and molecular separation. Nevertheless, the inability of uniform COF membranes to be produced on an industrial scale and their nonenvironmentally friendly fabrication method are the bottleneck preventing their industrial applications. Herein, we report a new green and industrially adaptable scraping-assisted interfacial polymerization (SAIP) technique to fabricate scalable and uniform TpPa COF membranes. The process used non-toxic and low-volatility ionic liquids (ILs) as organic phase instead of conventional organic solvents for interfacial synthesis of TpPa COF layer on a support membrane, which can simultaneously achieve the purposes of (i) improving the greenness of membrane-forming process and (ii) fabricating a robust membrane that can function beyond the conventional membranes. This approach yields a large-area, continuous COF membrane (19×25 cm2 ) with a thickness of 78 nm within a brief period of 2 minutes. The resulting membrane exhibited an unprecedented combination of high permeance (48.09 L m-2 h-1 bar-1 ) and antibiotic desalination efficiency (e.g., NaCl/adriamycin separation factor of 41.8), which is superior to the commercial benchmarking membranes.

13.
Soc Cogn Affect Neurosci ; 18(1)2023 10 28.
Article in English | MEDLINE | ID: mdl-37837406

ABSTRACT

Emotion regulation is vital in maintaining romantic relationships in couples. Although gender differences exist in cognitive and affective strategies during 'intrapersonal' emotion regulation, it is unclear how gender differences through affective bonds work in 'interpersonal' emotion regulation (IER) in couples. Thirty couple dyads and 30 stranger dyads underwent functional near-infrared spectroscopy hyperscanning recordings when targets complied with their partner's cognitive engagement (CE) and affective engagement (AE) strategies after viewing sad and neutral videos. Behaviorally, for males, CE was less effective than AE in both groups, but little difference occurred for females between AE and CE. For couples, Granger causality analysis showed that male targets had less neural activity than female targets in CH06, CH13 and CH17 during CE. For inflow and outflow activities on CH06 and CH13 (frontopolar cortex), respectively, male targets had less activity in the CE condition than in the AE condition, while for outflow activities on CH 17 (dorsolateral prefrontal cortex), female targets had more activity in the CE condition than in the AE condition. However, these differences were not observed in strangers. These results suggest gender differences in CE but not in AE and dissociable flow patterns in male and female targets in couples during sadness regulation.


Subject(s)
Brain Mapping , Emotional Regulation , Humans , Male , Female , Brain Mapping/methods , Interpersonal Relations , Sex Factors , Spectroscopy, Near-Infrared/methods , Cognition/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
14.
J Agric Food Chem ; 71(37): 13920-13933, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37688549

ABSTRACT

In this study, changes in the physical, structural, and assembly characteristics of silver carp myofibrillar proteins (MPs) at different ionic strength (I) values were investigated. Moreover, the differential proteomic profile of soluble MPs was analyzed using 4D proteomics based on timsTOF Pro mass spectrometry. Solubility of MPs significantly increased at high I (>0.3), and the increase in I enhanced the apparent viscosity, fluorescence intensity, surface hydrophobicity, and α-helix content of MPs solution. Particle size and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns also supported the solubility profiles. Transmission electron microscopy and atomic force microscopy observations revealed the morphological assembly and disassembly of MPs under different I conditions. Finally, proteomic analysis revealed the evolution law of salt-induced solubilization of MPs and the critical molecular characteristics in different I environments. The number of differentially abundant proteins (DAPs) decreased with the increase of I, and most DAPs related to the muscle filament sliding, contraction and assembly, actinin binding, and actin filament binding. The soluble abundance of myosin and some structural proteins was dependent on I, and structural proteins in the Z-disk and M-band might contribute to the solubilization of myosin. Our findings provide insightful information about the impact of common I on the solubility pattern of MPs from freshwater fish.


Subject(s)
Carps , Proteomics , Animals , Electrophoresis, Polyacrylamide Gel , Fresh Water , Mass Spectrometry
15.
Brain Sci ; 13(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37239304

ABSTRACT

Previous studies on the brain-brain interaction of deception have shown different patterns of interpersonal brain synchronization (IBS) between different genders. However, the brain-brain mechanisms in the cross-sex composition need to be better understood. Furthermore, there needs to be more discussion about how relationships (e.g., romantic couples vs. strangers) affect the brain-brain mechanism under interactive deception. To elaborate on these issues, we used the functional near-infrared spectroscopy (fNIRS)-based hyperscanning approach to simultaneously measure interpersonal brain synchronization (IBS) in romantic couples (heterosexual) and cross-sex stranger dyads during the sender-receiver game. The behavioral results found that the deception rate of males was lower than that of females, and romantic couples were deceived less than strangers. Significantly increased IBS was observed in the frontopolar cortex (FPC) and right temporoparietal junction (rTPJ) of the romantic couple group. Moreover, the IBS is negatively correlated with the deception rate. No significantly increased IBS was observed in cross-sex stranger dyads. The result corroborated the lower deception of males and romantic couples in cross-sex interactions. Furthermore, IBS in the PFC and rTPJ was the underlying dual-brain neural basis for supporting honesty in romantic couples.

16.
Small ; 19(30): e2301071, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069773

ABSTRACT

With the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices. In this review, the state-of-the-art technologies for developing organic devices by using conductive polymers are comprehensively summarized, which will begin with a description of the commonly used synthesis methods and mechanisms for conductive polymers. Next, the current techniques for the fabrication of conductive polymer films will be proffered and discussed. Subsequently, approaches for tailoring the nanostructures and microstructures of conductive polymer films are summarized and discussed. Then, the applications of micro/nano-fabricated conductive films-based devices in various fields are given and the role of the micro/nano-structures on the device performances is highlighted. Finally, the perspectives on future directions in this exciting field are presented.

17.
Gels ; 9(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37102924

ABSTRACT

3D bioprinting holds great potential for use in tissue engineering to treat degenerative joint disorders, such as osteoarthritis. However, there is a lack of multifunctional bioinks that can not only support cell growth and differentiation, but also offer protection to cells against injuries caused by the elevated oxidative stress; this conditions is a common characteristic of the microenvironment of the osteoarthritis disease. To mitigate oxidative stress-induced cellular phenotype change and malfunction, an anti-oxidative bioink derived from an alginate dynamic hydrogel was developed in this study. The alginate dynamic hydrogel gelated quickly via the dynamic covalent bond between the phenylboronic acid modified alginate (Alg-PBA) and poly (vinyl alcohol) (PVA). It presented good self-healing and shear-thinning abilities because of the dynamic feature. The dynamic hydrogel supported long-term growth of mouse fibroblasts after stabilization with a secondary ionic crosslinking between introduced calcium ions and the carboxylate group in the alginate backbone. In addition, the dynamic hydrogel showed good printability, resulting in the fabrication of scaffolds with cylindrical and grid structures with good structural fidelity. Encapsulated mouse chondrocytes maintained high viability for at least 7 days in the bioprinted hydrogel after ionic crosslinking. Most importantly, in vitro studies implied that the bioprinted scaffold could reduce the intracellular oxidative stress for embedded chondrocytes under H2O2 exposure; it could also protect the chondrocytes from H2O2-induced downregulation of extracellular matrix (ECM) relevant anabolic genes (ACAN and COL2) and upregulation of a catabolic gene (MMP13). In summary, the results suggest that the dynamic alginate hydrogel can be applied as a versatile bioink for the fabrication of 3D bioprinted scaffolds with an innate antioxidative ability; this technique is expected to improve the regenerative efficacy of cartilage tissues for the treatment of joint disorders.

18.
Neurosci Lett ; 802: 137173, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36898651

ABSTRACT

Based on the mind-blindness hypothesis, a large number of studies have shown that individuals with autism-spectrum disorder (ASD) and autistic traits have empathy deficits. However, the recent double empathy theory contradicts the mind-blindness hypothesis and suggests that individuals with ASD and autistic traits do not necessarily lack empathy. Thus, the presence of empathy deficits in individuals with ASD and autistic traits is still controversial. We recruited 56 adolescents (28 high autistic traits, 28 low autistic traits, 14-17 years old) in this study to explore the relationship between empathy and autistic traits. The study participants were required to undertake the pain empathy task, during which the electroencephalograph (EEG) activities were recorded. Our results show that empathy was negatively associated with autistic traits at the questionnaire, behavioral, and EEG levels. Our results also suggested that empathy deficits in adolescents with autistic traits may be manifested mainly in the late stages of cognitive control processing.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child Development Disorders, Pervasive , Child , Humans , Adolescent , Empathy , Autistic Disorder/psychology , Autism Spectrum Disorder/psychology , Social Behavior
19.
Cereb Cortex ; 33(12): 7960-7970, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36944535

ABSTRACT

Sadness regulation is crucial for maintaining the romantic relationships of couples. Interpersonal emotion regulation, including affective engagement (AE) and cognitive engagement (CE), activates social brain networks. However, it is unclear how AE and CE regulate sadness in couples through affective bonds. We recruited 30 heterosexual couple dyads and 30 heterosexual stranger dyads and collected functional near-infrared spectroscopy hyperscanning data while each dyad watched sad or neutral videos and while the regulator regulated the target's sadness. Then, we characterized interbrain synchronization (IBS) and Granger causality (GC). The results indicated that AE and CE were more effective for couples than for strangers and that sadness evaluation of female targets was lower than that of male targets. CE-induced IBS at CH13 (BA10, right middle frontal gyrus) was lower for female targets than for male targets, while no gender difference in AE was detected. GC change at CH13 during CE was lower in the sad condition for male targets than for female targets, while no gender difference in AE was discovered. These observations suggest that AE and CE activate affective bonds but that CE was more effective for regulating sadness in female targets, revealing different neural patterns of cognitive and affective sadness regulation in couples.


Subject(s)
Emotional Regulation , Interpersonal Relations , Female , Humans , Male , Brain/physiology , Brain Mapping/methods , Cognition , Spectroscopy, Near-Infrared/methods
20.
Chem Commun (Camb) ; 59(22): 3313-3316, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36852458

ABSTRACT

Herein, a novel switchable multipath cascade cyclization via chemodivergent reaction between readily available ketoamides and deconjugated butenolides was developed to efficiently synthesize γ-lactone fused γ-lactams and succinimide fused hemiketals. The Aldol/aza-Michael reaction and Aldol/imidation/hemiketalization reaction were enabled by catalytic amounts of two bases, namely tetramethyl guanidine and NaOAc. A wide range of substrate scope with diverse functional group compatibility was demonstrated to deliver the corresponding products with good yield and excellent diastereoselectivity (>60 examples).

SELECTION OF CITATIONS
SEARCH DETAIL
...