Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Gels ; 9(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38131929

ABSTRACT

Aerogel is widely recognized as a superinsulating material with great potential for enhancing the thermal insulation performance of building walls. It can be applied in various forms such as aerogel plasters (AP), aerogel fibrous composites (AFC), and aerogel concrete (AC) in practical engineering applications. This study aims to investigate the most efficient application form for maximizing building insulation performance while minimizing the amount of aerogel used. To predict the thermal insulation performance of aerogel-insulated walls, a resistance-capacitance network model integrating the aerogels' effective thermal conductivity model was developed and was validated by comparing it with Fluent simulation software results in terms of surface temperature. Using the validated models, the thermophysical parameters, transient thermal properties, and transmission load were predicted and compared among AP, AFC, and AC walls. The results indicate that using AFC can result in approximately 50% cost savings to achieve the same thermal resistance. After adding a 20 mm thickness of aerogel to the reference wall without aerogel, the AFC wall exhibited the highest improvement in thermal insulation performance, reaching 46.0-53.5%, followed by the AP wall, and then the AC wall, aligning with considerations of microstructural perspectives, thermal resistance distributions, and thermal non-uniformity factors. Therefore, giving priority to AFC use could reduce the required amount of silica aerogel and enhance economic efficiency. These results provide valuable insights for theoretical models and the application of aerogel-insulated walls in building engineering insulation.

2.
Artif Intell Rev ; 56(5): 4077-4112, 2023.
Article in English | MEDLINE | ID: mdl-36160366

ABSTRACT

Feature selection facilitates intelligent information processing, and the unsupervised learning of feature selection has become important. In terms of unsupervised feature selection, the Laplacian score (LS) provides a powerful measurement and optimization method, and good performance has been achieved using the recent forward iterative Laplacian score (FILS) algorithm. However, there is still room for advancement. The aim of this paper is to improve the FILS algorithm, and thus, feature significance (SIG) is mainly introduced to develop a high-quality selection method, i.e., the incremental forward iterative Laplacian score (IFILS) algorithm. Based on the modified LS, the metric difference in the incremental feature process motivates SIG. Therefore, SIG offers a dynamic characterization by considering initial and terminal states, and it promotes the current FILS measurement on only the terminal state. Then, both the modified LS and integrated SIG acquire granulation nonmonotonicity and uncertainty, especially on incremental feature chains, and the corresponding verification is achieved by completing examples and experiments. Furthermore, a SIG-based incremental criterion of minimum selection is designed to choose optimization features, and thus, the IFILS algorithm is naturally formulated to implement unsupervised feature selection. Finally, an in-depth comparison of the IFILS algorithm with the FILS algorithm is achieved using data experiments on multiple datasets, including a nominal dataset of COVID-19 surveillance. As validated by the experimental results, the IFILS algorithm outperforms the FILS algorithm and achieves better classification performance.

3.
ACS Omega ; 7(25): 21675-21683, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35785268

ABSTRACT

The disposal effect of thermal desorption of oil-based cuttings is predicted by analyzing the material temperature rise, heat transfer, and liquid evaporation in the processing. Based on the characteristics of material conveying in the heating bed, this paper establishes the governing equations for the simulation calculation of thermal desorption processing and demonstrates the correlation model between the mass change of wet components and the heat required. Changes in the material temperature and mass content of wet components in the process are calculated using the finite-volume method. The minimum temperature of the material layer experienced three stages: slow rising stage, stagnation stage, and rapid rising stage. In the first two stages, material preheating and water evaporation are the dominant processes. The third stage is mainly the evaporation of the oil phase. The inflection point between the second and third stages in the temperature rise curve can be regarded as the end point of water evaporation. During conveying, residence time and material layer thickness significantly influence the liquid phases removal ratio. The material drying area gradually expands from the boundary to the center with the extension of residence time, and the average mass fraction of liquids decreases slowly. The evaluation results from the final temperature and residual oil content of solid slag after disposal are consistent with the tests and have better accuracy in predicting the disposal effect when the heating temperature is higher and the residence time is longer.

4.
Entropy (Basel) ; 21(7)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-33267371

ABSTRACT

Rough set theory is an important approach for data mining, and it refers to Shannon's information measures for uncertainty measurements. The existing local conditional-entropies have both the second-order feature and application limitation. By improvements of hierarchical granulation, this paper establishes double-granule conditional-entropies based on three-level granular structures (i.e., micro-bottom, meso-middle, macro-top ), and then investigates the relevant properties. In terms of the decision table and its decision classification, double-granule conditional-entropies are proposed at micro-bottom by the dual condition-granule system. By virtue of successive granular summation integrations, they hierarchically evolve to meso-middle and macro-top, to respectively have part and complete condition-granulations. Then, the new measures acquire their number distribution, calculation algorithm, three bounds, and granulation non-monotonicity at three corresponding levels. Finally, the hierarchical constructions and achieved properties are effectively verified by decision table examples and data set experiments. Double-granule conditional-entropies carry the second-order characteristic and hierarchical granulation to deepen both the classical entropy system and local conditional-entropies, and thus they become novel uncertainty measures for information processing and knowledge reasoning.

SELECTION OF CITATIONS
SEARCH DETAIL