Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.065
Filter
1.
Colloids Surf B Biointerfaces ; 241: 114064, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954937

ABSTRACT

Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.

2.
Genome Biol ; 25(1): 171, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951917

ABSTRACT

BACKGROUND: The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS: We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS: The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.


Subject(s)
DNA Copy Number Variations , Triticum , Triticum/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing , Genetic Markers , Alleles
3.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963032

ABSTRACT

Cirrhosis impairs macrophage function and disrupts bile acid homeostasis. Although bile acids affect macrophage function in patients with sepsis, whether and how the bile acid profile is changed by infection in patients with cirrhosis to modulate macrophage function remains unclear. The present study aimed to investigate the changes in the bile acid profile of patients with cirrhosis and infection and their effects on macrophage function. Serum was collected from 20 healthy subjects, 18 patients with cirrhosis and 39 patients with cirrhosis and infection. Bile acid profiles were detected using high­performance liquid chromatography­triple time­of­flight mass spectrometer. The association between bile acid changes and infection was analysed using receiver operating characteristic (ROC) curves. Infection­altered bile acids were used in combination with lipopolysaccharides (LPS) to stimulate RAW264.7/THP­1 cells in vitro. The migratory capacity was evaluated using wound healing and Transwell migration assays. The expression of Arg­1, iNOS, IκBα, phosphorylated (p­)IκBα and p65 was examined with western blotting and immunofluorescence, Tnfα, Il1b and Il6 mRNA was examined with RT­qPCR, and CD86, CD163 and phagocytosis was measured with flow cytometry. The ROC curves showed that decreased hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA) levels were associated with infection. HDCA or DCA combined with LPS enhanced the phagocytic and migratory ability of macrophages, accompanied by upregulation of iNOS and CD86 protein expression as well as Tnfα, Il1b, and Il6 mRNA expression. However, neither HDCA nor DCA alone showed an effect on these phenotypes. In addition, DCA and HDCA acted synergistically with LPS to increase the expression of p­IκBα and the intranuclear migration of p65. Infection changed the bile acid profile in patients with cirrhosis, among which the reduction of DCA and HDCA associated most strongly with infection. HDCA and DCA enhanced the sensitivity of macrophage function loss to LPS stimulation. These findings suggested a potential role for monitoring the bile acid profile that could help manage patients with cirrhosis and infection.


Subject(s)
Bile Acids and Salts , Liver Cirrhosis , Macrophage Activation , Macrophages , Humans , Liver Cirrhosis/metabolism , Macrophage Activation/drug effects , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Male , Female , Middle Aged , Mice , RAW 264.7 Cells , Animals , Macrophages/metabolism , Macrophages/immunology , Lipopolysaccharides , THP-1 Cells , Adult , Aged , Phagocytosis/drug effects , Cytokines/metabolism , Cell Movement/drug effects
4.
Food Chem ; 458: 140311, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968718

ABSTRACT

The on-site detection of mancozeb in food samples holds immense value for food safety. A red-fluorescent europium complex (Eu-PYDC-Phen) has been prepared and employed as a fluorescence probe for mancozeb detection. The optimized probe suspension exhibits excellent detection performances, including a wide linear range (0-0.24 mM), low detection limit (65 nM), rapid response (2 mins) and high selectivity. Moreover, a portable detection platform was carefully designed, integrating the Eu-PYDC-Phen-based fluorescent test strips with smartphone color recognition software. This innovative platform enables visual and on-site detection of mancozeb in tomato, apple, and lettuce, achieving satisfactory recovery rates (90.34 to 106.50%). Furthermore, the integration of machine learning techniques based on hierarchical clustering algorithm has the potential to further improve the prediction and decision-making efficiency in mancozeb detection. This work provides an economical, convenient, and reliable strategy for on-site detection of pesticide in agricultural products, thereby making a meaningful contribution to food safety.

5.
Acta Biomater ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969077

ABSTRACT

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1ß, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70% in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1ß. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.

6.
Ann Hematol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969929

ABSTRACT

Wilms tumor 1 (WT1) gene mutations are infrequent in myelodysplastic syndrome (MDS), but MDS with WT1 mutations (WT1mut) is considered high risk for acute myeloid leukemia (AML) transformation. The influence of WT1 mutations in patients with MDS after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We performed a retrospective analysis of 136 MDS with excess blasts 2 (MDS-EB2) patients with available WT1 status who underwent their first allo-HSCT between 2017 and 2022 in our center. There were 20 (20/136, 15%) cases in the WT1mut group and 116 (116/136, 85%) cases in the WT1 wild-type (WT1wt) group. WT1mut patients had a higher 2-year cumulative incidence of relapse (CIR) than WT1wt cases (26.2% vs. 9.4%, p = 0.037) after allo-HSCT. Multivariate analysis of relapse showed that WT1 mutations (HR, 6.0; p = 0.002), TP53 mutations (HR, 4.2; p = 0.021), and ≥ 5% blasts in bone marrow (BM) at transplantation (HR, 6.6; p = 0.004) were independent risk factors for relapse. Patients were stratified into three groups according to the risk factors. Two-year CIR differed significantly in high-, intermediate-, and low-risk groups (31.8%, 11.6%, and 0%, respectively). Hence, WT1 mutations may be related to post-transplant relapse in patients with MDS-EB2, which warrants further study.

7.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965383

ABSTRACT

Targeted protein degradation (TPD) represents a potent chemical biology paradigm that leverages the cellular degradation machinery to pharmacologically eliminate specific proteins of interest. Although multiple E3 ligases have been discovered to facilitate TPD, there exists a compelling requirement to diversify the pool of E3 ligases available for such applications. Here we describe a clustered regularly interspaced short palindromic repeats (CRISPR)-based transcriptional activation screen focused on human E3 ligases, with the goal of identifying E3 ligases that can facilitate heterobifunctional compound-mediated target degradation. Through this approach, we identified a candidate proteolysis-targeting chimera (PROTAC), 22-SLF, that induces the degradation of FK506-binding protein 12 when the transcription of FBXO22 gene is activated. Subsequent mechanistic investigations revealed that 22-SLF interacts with C227 and/or C228 in F-box protein 22 (FBXO22) to achieve target degradation. Lastly, we demonstrated the versatility of FBXO22-based PROTACs by effectively degrading additional endogenous proteins, including bromodomain-containing protein 4 and the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion protein.

8.
Cornea ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967494

ABSTRACT

PURPOSE: To evaluate changes of hydroxyproline concentration and its influencing factors of small incision lenticule extraction (SMILE)-derived corneal stromal lenticules with different preservation methods. METHODS: A total of 390 corneal stromal lenticules of 195 patients were derived from SMILE surgeries. Thirty of the lenticules were classified as the fresh (control) group, and the rest were randomly and evenly divided and stored in anhydrous glycerol, silicone oil, Optisol, and cryopreservation for 1 day, 1 week, or 1 month. A hydroxyproline assay kit (ab222941, Abcam) was used to measure the hydroxyproline concentration in each preservation method. Concentrations of MMP-2, TIMP-2, TNFα, TGFß2, and reactive oxygen species were also evaluated. RESULTS: In the anhydrous glycerol group, the concentration of hydroxyproline decreased within 1 week (fresh: 1 dΔ = 0.229, P < 0.001*; 1 d - 1 wΔ = 0.055, P < 0.001*) while that in the silicone oil group remained stable in 1 week (1 d - 1 wΔ = -0.005, P = 0.929) and decreased significantly in 1 m (1 m - 1 wΔ = -0.041, P = 0.003*). The sequence of hydroxyproline concentration in the Optisol group was 1 m > 1 day > 1 week. Hydroxyproline concentration in the cryopreservation group decreased within 1 m. Hydroxyproline concentration was highest in the Optisol group and lowest in the anhydrous glycerol group under the same preservation time. Hydroxyproline concentration was negatively correlated with MMP-2 (r = -0.16, P = 0.421) and TIMP-2 (r = -0.56, P = 0.002*) while MMP-2 and TNFα (r = 0.17, P = 0.242), TIMP-2 and TGFß2 (r = 0.21, P = 0.207), and TNFα and reactive oxygen species (r = 0.52, P = 0.007*) were positively correlated. CONCLUSIONS: More collagen was retained in SMILE lenticules preserved in Optisol under the same preservation time. The mechanism of the changes of collagen in preserved SMILE-derived lenticules and oxidative stress requires additional investigation.

9.
Phytopathology ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970805

ABSTRACT

MicroRNAs (miRNAs) play crucial roles in plant defense responses. However, the underlying mechanism by which miR398b contributes to soybean responses to soybean cyst nematode (SCN, Heterodera glycines) remains elusive. In this study, by using Agrobacterium rhizogenes-mediated transformation of soybean hairy roots, we observed that miR398b and target genes GmCCS and GmCSD1b played vital functions in soybean-H. glycines interaction. The study revealed that the abundance of miR398b was down-regulated by H. glycines infection, and overexpression miR398b enhanced susceptibility of soybean to H. glycines. Conversely, silencing of miR398b improved soybean resistance to H. glycines. Detection assays revealed that miR398b rapidly senses stress-induced ROS, leading to the repression of target genes GmCCS and GmCSD1b, and regulating the accumulation of plant defense genes against nematodes infection. Moreover, exogenous synthetic ds-miR398b enhanced soybean sensitivity to H. glycines by modulating H2O2 and O2- levels. Functional analysis demonstrated that overexpression GmCCS and GmCSD1b in soybean enhanced resistance to H. glycines. RNA interference (RNAi)-mediated repression of GmCCS and GmCSD1b in soybean increased susceptibility to H. glycines. RNA-sequencing revealed that a majority of differentially expressed genes (DEGs) in overexpression GmCCS were associated with oxidative stress. Overall, the results indicate that miR398b targets superoxide dismutase genes, which negatively regulate soybean resistance to H. glycines via modulating ROS levels and defense signal.

10.
Article in English | MEDLINE | ID: mdl-38972033

ABSTRACT

Sulfonated octaphenylsilsesquioxane (SPOSS) has garnered significant interest due to its unique structural properties of containing the -SO3H group and its wide range of applications. This study introduces a novel approach to the synthesis of SPOSS, leveraging machine learning algorithms to explore new recipes and achieve higher -SO3H functionality. The focus was on synthesizing SPOSS with 2, 4, 6, and 8-SO3H functional groups on the phenyl group, marked as SPOSS-2, SPOSS-4, SPOSS-6, and SPOSS-8, respectively. The successful synthesis of SPOSS-8 was achieved by 5 training outputs based on the recipes of 21 sets of low-functionality (<4) SPOSS. The structure of SPOSS was confirmed using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and time-of-flight mass spectrometry (MALDI-TOF MS). Machine learning analysis revealed that K2SO4 is an important additive to improve the functionality of SPOSS. A synthetic mechanism was proposed and validated that K2SO4 participated in the reaction to generate sulfur trioxide (SO3), a sulfonating agent with high reactivity. SPOSS shows thermal stability superior to octaphenylsilsesquioxane (OPS) according to thermogravimetric analysis (TGA) and TG-FTIR.

11.
Sci Rep ; 14(1): 14890, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38937531

ABSTRACT

Cervical cancer (CC) is a prevalent gynecological cancer worldwide that significantly impacts the quality of life and the physical and mental well-being of women. However, there have been limited studies utilizing Mendelian randomization (MR) analysis to investigate the connection between immune cells and CC. This study is to investigate the causal effects of immune traits on CC and non-neoplastic conditions of the cervix. The GWAS data for 731 immunophenotypes and six GWAS data for CC from the FinnGen database were downloaded. Subsequently, a two-sample MR analysis was conducted using the MR Egger, Weighted median, Inverse variance weighted (IVW), Simple mode, and Weighted mode methods. Our study has identified the potential causal effects of immune traits on inflammatory diseases of the cervix, other noninflammatory disorders of the cervix uteri, carcinoma in situ of cervix uteri, adenocarcinomas of cervix, squamous cell neoplasms and carcinoma of cervix, as well as malignant neoplasm of the cervix uteri, with the respective numbers being 8, 6, 11, 8, 23, and 12, respectively. A strong correlation between classic monocytes and various cervical diseases was revealed. Furthermore, we discovered that B cells expressing BAFF-R have the ability to impede the advancement of malignant CC, specifically squamous cell neoplasms and carcinoma of cervix. Our study has demonstrated a significant association between immune traits and both CC and non-neoplastic conditions of the cervix through two-sample Mendelian randomization, providing valuable insights for future clinical research.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/immunology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
12.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838918

ABSTRACT

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Janus Kinase 1 , Proteolysis , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Proteolysis/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Discovery , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Proteasome Endopeptidase Complex/metabolism
13.
Adv Healthc Mater ; : e2401179, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895924

ABSTRACT

Keratomycosis, caused by pathogenic fungi, is an intractable blinding eye disease. Corneal penetration is an essential requirement for conventional antifungal medications to address keratomycosis. Due to the distinctive anatomical and physiological structure of the cornea, the therapeutic efficacy is hampered by the inadequate penetration capacity. Despite the emergence of diverse antifungal drug delivery systems and advanced antifungal nanomaterials, it has remained challenging to achieve corneal penetration over the past decade. This study fabricates a penetrative ionic organic molecular cage-based nanozyme (OMCzyme) for treating keratomycosis. The synthesis of OMCzyme involved two steps. Initially, the ionic OMC is synthesized by a [2+3] cycloimination reaction of triformylphloroglucinol and 2,3-diaminopropionic acid. Subsequently, OMCzyme is fabricated by coordination of Fe2⁺ with carboxyl anions and phenolic hydroxyls in the organic cage, and further deposition of silver nanoparticles on the surface of OMC-Fe complex. The as-prepared OMCzyme demonstrates excellent water dispersion, peroxidase-like activity, in vitro and in vivo biocompatibility, and corneal penetration. Notably, the nanozyme displays targeted antifungal activity, effectively combating Fusarium solani with negligible cytotoxicity toward human corneal epithelial cells. The hybrid mimic is further demonstrated to be effective in treating keratomycosis in mice, indicating the potential of OMCzyme for curing fungal infectious diseases.

14.
BMC Pulm Med ; 24(1): 294, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915049

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition that imposes a significant healthcare burden worldwide. Accurate staging of COPD severity is crucial for patient management and treatment planning. METHODS: The retrospective study included 530 hospital patients. A lobe-based radiomics method was proposed to classify COPD severity using computed tomography (CT) images. First, we segmented the lung lobes with a convolutional neural network model. Secondly, the radiomic features of each lung lobe are extracted from CT images, the features of the five lung lobes are merged, and the selection of features is accomplished through the utilization of a variance threshold, t-Test, least absolute shrinkage and selection operator (LASSO). Finally, the COPD severity was classified by a support vector machine (SVM) classifier. RESULTS: 104 features were selected for staging COPD according to the Global initiative for chronic Obstructive Lung Disease (GOLD). The SVM classifier showed remarkable performance with an accuracy of 0.63. Moreover, an additional set of 132 features were selected to distinguish between milder (GOLD I + GOLD II) and more severe instances (GOLD III + GOLD IV) of COPD. The accuracy for SVM stood at 0.87. CONCLUSIONS: The proposed method proved that the novel lobe-based radiomics method can significantly contribute to the refinement of COPD severity staging. By combining radiomic features from each lung lobe, it can obtain a more comprehensive and rich set of features and better capture the CT radiomic features of the lung than simply observing the lung as a whole.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Severity of Illness Index , Support Vector Machine , Tomography, X-Ray Computed , Humans , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/classification , Tomography, X-Ray Computed/methods , Retrospective Studies , Male , Female , Middle Aged , Aged , Lung/diagnostic imaging , Lung/pathology , Neural Networks, Computer , Radiomics
15.
J Mater Chem B ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916076

ABSTRACT

Deformable liquid crystal polymers (LCPs), which exhibit both entropic elasticity of polymer networks and anisotropic properties originating from ordered mesogens, have gained more and more interest for use as biomedical soft actuators. Especially, LCP actuators with controllable mesogen alignment, sophisticated geometry and reprogrammability are a rising star on the horizon of soft actuators, since they enable complex and multiple actuations. This review focuses on two topics: (1) the regulation of mesogen alignment and geometry of LCP actuators for complex actuations; (2) newly designed reprogrammable LCP materials for multiple actuations. First, basic actuation mechanisms are briefly introduced. Then, LCP actuators with complex actuations are demonstrated. Special attention is devoted to the improvement of fabrication methods, which profoundly influence the available complexity of the mesogen alignment and geometry. Subsequently, reprogrammable LCP actuators featuring dynamic networks or shape memory effects are discussed, with an emphasis on their multiple actuations. Finally, perspectives on the current challenges and potential development trends toward more intelligent LCP actuators are discussed, which may shed light on future investigations in this field.

16.
J Am Heart Assoc ; 13(13): e034126, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38934874

ABSTRACT

BACKGROUND: The association between soy isoflavones intake and cardiometabolic health remains inconclusive. We investigated the associations of urinary biomarkers of isoflavones including daidzein, glycitein, genistein, equol (a gut microbial metabolite of daidzein), and equol-predicting microbial species with cardiometabolic risk markers. METHODS AND RESULTS: In a 1-year study of 305 Chinese community-dwelling adults aged ≥18 years, urinary isoflavones, fecal microbiota, blood pressure, blood glucose and lipids, and anthropometric data were measured twice, 1 year apart. Brachial-ankle pulse wave velocity was also measured after 1 year. A linear mixed-effects model was used to analyze repeated measurements. Logistic regression was used to calculate the adjusted odds ratio (aOR) and 95% CI for the associations for arterial stiffness. Each 1 µg/g creatinine increase in urinary equol concentrations was associated with 1.47%, 0.96%, and 3.32% decrease in triglycerides, plasma atherogenic index, and metabolic syndrome score, respectively (all P<0.05), and 0.61% increase in high-density lipoprotein cholesterol (P=0.025). Urinary equol was also associated with lower risk of arterial stiffness (aOR, 0.28 [95% CI, 0.09-0.90]; Ptrend=0.036). We identified 21 bacterial genera whose relative abundance was positively associated with urinary equol (false discovery rate-corrected P<0.05) and constructed a microbial species score to reflect the overall equol-predicting capacity. This score (per 1-point increase) was inversely associated with triglycerides (percentage difference=-1.48%), plasma atherogenic index (percentage difference=-0.85%), and the risk of arterial stiffness (aOR, 0.27 [95% CI, 0.08-0.88]; all P<0.05). CONCLUSIONS: Our findings suggest that urinary equol and equol-predicting microbial species may improve cardiometabolic risk parameters in Chinese adults.


Subject(s)
Biomarkers , Cardiometabolic Risk Factors , Equol , Gastrointestinal Microbiome , Vascular Stiffness , Humans , Equol/urine , Male , Female , Middle Aged , Biomarkers/urine , Biomarkers/blood , China/epidemiology , Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/microbiology , Risk Assessment , Isoflavones/urine , Feces/microbiology , East Asian People
17.
Article in English | MEDLINE | ID: mdl-38917287

ABSTRACT

More than 6 million Americans are at risk for Alzheimer's Disease Related Dementias (ADRD), most of whom are 65 or older. The clock drawing test (CDT) is a quick, simple, and effective technique that has the potential advantage of self-management and screening for ADRD patients. Current CDT-based ADRD screening studies focus more on efficacy, involving many handcrafted features, ignoring data modalities, and lacking validation. This paper aims to propose a unified telemedicine framework for fully and semi-automatic effective early ADRD screening based on multimodal and agile data fusion, focusing on the interpretability and validation of the model by using gradient-weighted class activation mapping (Grad-CAM) and locally linear embedding (LLE). The datasets for this work include 1,662 samples of CDT images and related demographic and cognitive information. The fully automatic case involving only CDT images can achieve the highest AUC of 81% with a 75% recall rate in binary screening. The multimodal data fusion in the semi-automatic case can achieve up to 90% AUC with an 83% recall rate. The visualization of the Convolutional Neural Networks (CNN) shows that it can automatically obtain critical information about the outline, scale, and clock hands from CDT images, and the analysis of structured features shows that the memory test is key to effective ADRD screening.

18.
Tob Induc Dis ; 222024.
Article in English | MEDLINE | ID: mdl-38835514

ABSTRACT

INTRODUCTION: The controversial relationship between smoking and prostate cancer (PCa) risk prompted us to conduct a cross-sectional study using the National Health and Nutrition Examination Survey (NHANES) database and apply Mendelian randomization (MR) analyses in order to clarify the possible causal effect of smoking on PCa risk. METHODS: Using univariate and multivariate logistic regression methods, a secondary analysis of the pooled 2003-2018 NHANES dataset was performed to explore the association between smoking and PCa risk. Propensity-score matching was used to reduce selection bias. Then, we conducted subsequent MR analysis study to investigate the potential causal effect of smoking on PCa risk, with genetic variants of four exposure factors including the lifetime smoking index, light smoking, smoking initiation, and the amount of smoking per day obtained from genome-wide association studies, and PCa summary statistics obtained from three database populations. Inverse-variance weighting was the primary analytical method, and weighted median and MR-Egger regression were used for sensitivity analyses. The MR results for the three PCa databases were combined using meta-analysis. RESULTS: The study included 16073 NHANES subjects, comprising 554 with PCa and 15519 without PCa. Logistic regression before and after matching did not reveal any significant association. Meta-analysis of the MR results also did not support an association of PCa risk with lifetime smoking index (OR=0.95; 95% CI: 0.83-1.09), light smoking (OR=1.00; 95% CI: 0.95-1.06), smoking initiation (OR=0.99, 95% CI=0.99-1.00), or the amount of smoking per day (OR=1.00; 95% CI: 0.99-1.00) and PCa risk. CONCLUSIONS: There was no evidence for an association between smoking and the risk of PCa. Further studies are needed to determine if there are any associations of other forms of smoking with the risk of PCa at different stages.

19.
Food Chem ; 455: 139880, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38852282

ABSTRACT

Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 µmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to ß-sheet, and reducing amyloid-like cross-ß structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.

20.
J Colloid Interface Sci ; 673: 92-103, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38875801

ABSTRACT

Carbon nanofibers (CFs) have been widely applied as electrodes for energy storage devices owing to the features of increased contact area between electrodes and electrolyte, and shortened transmission route of electrons. However, the poor electrochemical activity and severe waste of space hinder their further application as supercapacitors electrodes. In this work, MnO2-x nanoflowers restricted and epitaxial growth in/out carbon nanofibers (MnO2/MnO@CF) were prepared as excellent electrode materials for supercapacitors. With the synergistic effect of uniquely designed structure and the introduction of MnO and MnO2 nanoflowers, the prepared interconnected MnO2/MnO@CF electrodes demonstrated satisfactory electrochemical performance. Furthermore, the MnO2/MnO@CF//activated carbon (AC) asymmetric supercapacitor offered an outstanding long-term cycle stability. Besides, kinetic analysis of MnO2/MnO@CF-90 was conducted and the diffusion-dominated storage mechanism was well-revealed. This concept of "internal and external simultaneous decoration" with different valence states of manganese oxides was proven to improve the electrochemical performance of carbon nanofibers, which could be generalized to the preparation and performance improvement of other fiber-based electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...