Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 207: 116878, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173475

ABSTRACT

In the context of carbon emission reduction in the shipping industry, CCUS technology can modify ships to reduce carbon emissions, providing a new direction for the green development of the shipping industry. Based on this, this paper investigates the technology related to carbon capture on ships, firstly puts forward the applicable requirements of carbon capture technology; and analyses the adaptability of the existing carbon capture solutions to the shipping industry; and discusses the development prospect of carbon capture on ships through the three challenges of space utilisation, safety, and economy; and finally analyses the related policies. After analysis and discussion, this paper concludes that the alcohol-amine method is the most suitable carbon capture solution for ships, but there are challenges in economics and space utilisation. The future research direction lies in optimising the performance of the absorber, improving the energy efficiency of the system and solving the CO2 storage problem.


Subject(s)
Carbon Sequestration , Ships , Carbon , Carbon Dioxide/analysis , Industry
2.
Front Nutr ; 9: 907526, 2022.
Article in English | MEDLINE | ID: mdl-36159502

ABSTRACT

Previous studies have shown that myristic acid (MA), a saturated fatty acid, could promote the proliferation and differentiation of neural stem cells in vitro. However, the effect of MA on hippocampal neurons aging has not been reported in vivo. Here we employed 22-month-old naturally aged C57BL/6 mice to evaluate the effect and mechanism of MA on hippocampal aging. First, we examined a decreased exploration and spatial memory ability in aging mice using the open field test and Morris water maze. Consistently, aging mice showed degenerative hippocampal histomorphology by H&E and Nissl staining. In terms of mechanism, imbalance of GABRB2 and GABRA2 expression in aging mice might be involved in hippocampus aging by mRNA high throughput sequencing (mRNA-seq) and immunohistochemistry (IHC) validation. Then, we revealed that MA alleviated the damage of exploration and spatial memory ability and ameliorated degeneration and aging of hippocampal neurons. Meanwhile, MA downregulated GABRB2 and upregulated GABRA2 expression, indicating MA might alleviate hippocampal aging correlated with GABAergic signaling. In conclusion, our findings revealed MA alleviated hippocampal aging correlated with GABAergic signaling, which might provide insight into the treatment of aging-associated diseases.

3.
Front Endocrinol (Lausanne) ; 13: 878963, 2022.
Article in English | MEDLINE | ID: mdl-35592785

ABSTRACT

Objective: This study proposes to explore the protective effect of Zuo-Gui-Wan (ZGW) aqueous extract on spinal glucocorticoid-induced osteoporosis (GIOP) in vivo and in vitro, and the underlying mechanisms of ZGW in GIOP and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) were conducted. Methods: In vivo, SD rats were randomly divided into three groups: control group (CON), dexamethasone (DEXM) group, and ZGW group, which were given vehicle, DEXM injection, and ZGW intragastric administration at the same time. Vertebral bone microarchitecture, biomechanics, histomorphology, serum AKP activity, and the autophagosome of osteoblasts were examined. The mRNA expressions of let-7f, autophagy-associated genes (mTORC1, Beclin-1, ATG12, ATG5, and LC3), Runx2, and CTSK were examined. In vitro, the let-7f overexpression/silencing vector was constructed and transfected to evaluate the osteogenic differentiation of BMSCs. Western blot was employed to detect the expression of autophagy-associated proteins (ULK2, ATG5, ATG12, Beclin-1, LC3). Results: In vivo, ZGW promoted the bone quantity, quality, and strength; alleviated histological damage; increased the serum AKP activity; and reduced the autophagosome number in osteoblasts. Moreover, ZGW increased the let-7f, mTORC1, and Runx2 mRNA expressions and reduced the Beclin-1, ATG12, ATG5, LC3, and CTSK mRNA expressions. In vitro, bioinformatics prediction and dual luciferase reporter gene assay verified that let-7f targeted the binding to ULK2 and negatively regulated the ULK2 expression. Furthermore, by let-7f overexpression/silencing, ZGW may promote osteoblast differentiation of BMSCs by regulating let-7f and autophagy as evidenced by Western blot (ULK2, ATG5, ATG12, Beclin-1, LC3). Conclusions: ZGW may ameliorate GC-induced spinal osteoporosis by promoting osteoblast differentiation of BMSCs by activation of let-7f and suppression of autophagy.


Subject(s)
Osteogenesis , Osteoporosis , Animals , Autophagy , Beclin-1/genetics , Beclin-1/pharmacology , Core Binding Factor Alpha 1 Subunit , Glucocorticoids/adverse effects , Mechanistic Target of Rapamycin Complex 1 , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism , RNA, Messenger , Rats , Rats, Sprague-Dawley
4.
Materials (Basel) ; 15(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35454468

ABSTRACT

Phase change energy storage is a new type of energy storage technology that can improve energy utilization and achieve high efficiency and energy savings. Phase change hysteresis affects the utilization effect of phase change energy storage, and the influencing factors are unknown. In this paper, a low-temperature eutectic phase change material, CaCl2·6H2O-MgCl2·6H2O, was selected as the research object, combined with the mechanism of phase change hysteresis characteristics, using a temperature acquisition instrument to draw the step cooling curve. A differential scanning calorimeter was used to measure the DSC (differential scanning calorimetry) curve, and the hysteresis characteristics of phase transformation were studied by factors, such as heat storage temperature, cooling temperature, and cooling rate. The experimental results show that when heating temperature increases by 30 °C, phase transition hysteresis decreases by about 3 °C. The cooling temperature decreased by 10 °C, and the phase transition hysteresis increased by 2.69 °C. This paper provides a new idea for optimizing the properties of phase change energy storage materials and provides a possibility for realizing the parametric control of phase change hysteresis factors.

5.
Biomater Sci ; 9(17): 5762-5780, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34351340

ABSTRACT

Phase change materials (PCMs) are widely used in solar energy utilization, industrial waste heat recovery and building temperature regulation. However, there have been few studies on the application of PCMs in the field of biomedicine. In recent years, some scholars have carried out research in the biomedicine field using the characteristics of PCMs. It was observed that the excellent properties of PCMs enhance the quality of a variety of biomedical applications with many advantages over existing applications, which provide new methods for the treatment of disease. PCMs have broad application prospects in the field of biomedicine. Therefore, a timely review of relevant research progress is of great significance for the continuous development of new methods. Innovatively, from the unique perspective of the biomedical field, this paper systematically reviews the application and related research progress of PCMs from four aspects: cold chains for vaccines and medicines, drug delivery systems, thermotherapy/cold compress therapy and medical dressings. In addition, we summarize and discuss the general principles of the design and construction of PCMs in the biomedical field. Finally, existing problems, solutions and future research directions are also put forward in order to provide a basis for guidance and promote the future applications of phase change materials in the biomedicine field.


Subject(s)
Hot Temperature , Hyperthermia, Induced , Drug Delivery Systems
6.
J Genet ; 97(5): 1295-1306, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30555078

ABSTRACT

Genomic simple sequence repeat (SSR) markers were used to fingerprint and determine genetic similarity (GS) of the watermelon breeding lines, as well as the purity of their hybrid derivatives. Cluster analysis and Jaccard's distance coefficients using the unweighted pair group method with arithmetic mean (UPGMA) have classified these lines into three major groups. Notwithstanding,the genetic background of these lines is narrow as revealed by the restricted GS coefficients. Fifty-five sets of SSR markers were employed in this study. Fourteen of these markers were polymorphic between the breeding lines and were used for assessing hybrid purity. Cross-checking assay validated nine SSR markers as informative SSR markers for purity detection of these hybrids. To confirm the accuracy and efficiency of these markers, their derived PCR products were further sequenced, and ClSSR09643, ClSSR18153 and ClSSR01623 were selected as high-efficiency SSR markers. Interestingly, SSR markers ClSSR09643 and ClSSR18153 were broadly applied for purity detection of more than two different hybrids, while SSR marker ClSSR01623 behaved as a specific marker forpurity detection in this study. Genetic purity of six commercial watermelon hybrids was definitely evaluated using these SSR markers. Genetic purity of all tested hybrids exceeded 96% while the field purity was above 98%. Genetic purity test was an emergency for identifying off-types and selfed female in a lot of hybrid seeds. Here, we elucidated the potential of nine SSR markers including threewith higher breeding selection efficiency. We recommended them to seed company for purity improvement of watermelon commercial hybrid varieties.


Subject(s)
Citrullus/genetics , DNA, Plant/genetics , Microsatellite Repeats/genetics , Polymorphism, Genetic , Citrullus/classification , DNA, Plant/chemistry , Hybridization, Genetic , Sequence Analysis, DNA , Species Specificity
7.
Materials (Basel) ; 11(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914045

ABSTRACT

In order to solve undercooling and phase separation of sodium acetate trihydrate (SAT), experimental screening method was used to select nucleating agents and thickeners that are suitable for SAT, and the optimal ratio was identified. Through screening experiments of nucleating agents, it is found that disodium hydrogen phosphate can be used as an effective nucleating agent for SAT. When the weight content of disodium hydrogen phosphate in SAT is 2%, the degree of undercooling was reduced to approximately 2 K. The addition of 1⁻1.5% (weight) of xanthan gum (XG) to SAT can effectively inhibit the phase separation. Since the properties of SAT changes after the modification, the corresponding comparison analysis was performed. The results showed that XG has a significant influence on the SAT performance of SAT. With the addition of 1.5 wt % of XG in pure SAT, the latent heat of fusion and solid/liquid volume expansion reduce by 5.2% and 5.4% respectively, and the thermal conductivity and solid/liquid density also decreases accordingly.

8.
J Nanosci Nanotechnol ; 15(4): 3168-72, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26353556

ABSTRACT

Nanometer silicon dioxide additive can improve the thermal performance of barium hydroxide octahydrate as the phase change thermal energy storage material. Through measuring the changes of phase change temperature, degree of supercooling, thermal conductivity, the different effects of nanometer silicon dioxide additives of different mass fraction on barium hydroxide octahydrate thermal performance are compared. It can be seen that the precipitation of barium hydroxide octahydrate with nanometer silicon dioxide additive of 0.5% mass fraction improves greatly. The thermal conductivity of barium hydroxide octahydrate with nanometer silicon dioxide additive of 0.5% mass fraction increases to a very slight degree.

9.
J Nanosci Nanotechnol ; 15(4): 3200-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26353563

ABSTRACT

Accurately predicting the effective thermal conductivity of the fibrous materials is highly desirable but remains to be a challenging work. In this paper, the microstructure of the porous fiber materials is analyzed, approximated and modeled on basis of the statistical self-similarity of fractal theory. A fractal model is presented to accurately calculate the effective thermal conductivity of fibrous porous materials. Taking the two-phase heat transfer effect into account, the existing statistical microscopic geometrical characteristics are analyzed and the Hertzian Contact solution is introduced to calculate the thermal resistance of contact points. Using the fractal method, the impacts of various factors, including the porosity, fiber orientation, fractal diameter and dimension, rarified air pressure, bulk thermal conductivity coefficient, thickness and environment condition, on the effective thermal conductivity, are analyzed. The calculation results show that the fiber orientation angle caused the material effective thermal conductivity to be anisotropic, and normal distribution is introduced into the mathematic function. The effective thermal conductivity of fibrous material increases with the fiber fractal diameter, fractal dimension and rarefied air pressure within the materials, but decreases with the increase of vacancy porosity.

SELECTION OF CITATIONS
SEARCH DETAIL