Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.137
Filter
1.
PLoS One ; 19(7): e0298564, 2024.
Article in English | MEDLINE | ID: mdl-39008464

ABSTRACT

High-quality, chromosome-scale genomes are essential for genomic analyses. Analyses, including 3D genomics, epigenetics, and comparative genomics rely on a high-quality genome assembly, which is often accomplished with the assistance of Hi-C data. Curation of genomes reveal that current Hi-C-assisted scaffolding algorithms either generate ordering and orientation errors or fail to assemble high-quality chromosome-level scaffolds. Here, we offer the software Puzzle Hi-C, which uses Hi-C reads to accurately assign contigs or scaffolds to chromosomes. Puzzle Hi-C uses the triangle region instead of the square region to count interactions in a Hi-C heatmap. This strategy dramatically diminishes scaffolding interference caused by long-range interactions. This software also introduces a dynamic, triangle window strategy during assembly. Initially small, the window expands with interactions to produce more effective clustering. Puzzle Hi-C outperforms available scaffolding tools.


Subject(s)
Algorithms , Genomics , Software , Genomics/methods , Chromosomes/genetics , Humans , Genome
2.
Heliyon ; 10(12): e32940, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988546

ABSTRACT

Objectives: This study aimed to develop and validate a radiomics nomogram based on multiparameter MRI for preoperative differentiation of type II and type I endometrial carcinoma (EC). Methods: A total of 403 EC patients from two centers were retrospectively recruited (training cohort, 70 %; validation cohort, 30 %). Radiomics features were extracted from T2-weighted imaging, dynamic contrast-enhanced T1-weighted imaging at delayed phase(DCE4), and apparent diffusion coefficient (ADC) maps. Following dimensionality reduction, radiomics models were developed by logistic regression (LR), random forest (RF), bootstrap aggregating (Bagging), support vector machine (SVM), artificial neural network (ANN), and naive bayes (NB) algorithms. The diagnostic performance of each radiomics model was evaluated using the ROC curve. A nomogram was constructed by incorporating the optimal radiomics signatures with significant clinical-radiological features and immunohistochemistry (IHC) markers obtained from preoperative curettage specimens. The diagnostic performance and clinical value of the nomogram were evaluated using ROC curves, calibration curves, and decision curve analysis (DCA). Results: Among the radiomics models, the NB model, developed from 12 radiomics features derived from ADC and DCE4 sequences, exhibited strong performance in both training and validation sets, with the AUC values of 0.927 and 0.869, respectively. The nomogram, incorporating the radiomics model with significant clinical-radiological features and IHC markers, demonstrated superior performance in both the training (AUC = 0.951) and the validation sets (AUC = 0.915). Additionally, it exhibited excellent calibration and clinical utility. Conclusions: The radiomics nomogram has great potential to differentiate type II from type I EC, which may be an effective tool to guide clinical decision-making for EC patients.

3.
Microb Cell Fact ; 23(1): 198, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014373

ABSTRACT

BACKGROUND: Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS: Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS: The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.


Subject(s)
Metabolic Engineering , Methanol , Saccharomycetales , Methanol/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Metabolic Engineering/methods , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Formaldehyde/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , NAD/metabolism
4.
Cell Death Dis ; 15(7): 515, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025844

ABSTRACT

Although multiple myeloma (MM) responds well to immunotherapeutic treatment, certain portions of MM are still unresponsive or relapse after immunotherapy. Other immune molecules are needed for the immunotherapy of MM. Here, we revealed that leukocyte immunoglobulin-like receptor B4 (LILRB4) was highly expressed in multiple myeloma cell lines and patient samples and that the expression of LILRB4 was adversely correlated with the overall survival of MM patients. Knockdown of LILRB4 efficiently delayed the growth of MM cells both in vitro and in vivo. Mechanistically, IKZF1 transactivated LILRB4 expression to trigger the downstream of STAT3-PFKFB1 pathways to support MM cell proliferation. Blockade of LILRB4 signaling by blocking antibodies can effectively inhibit MM progression. Our data show that targeting LILRB4 is potentially an additional therapeutic strategy for the immunotherapeutic treatment of MM.


Subject(s)
Multiple Myeloma , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Humans , STAT3 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Mice , Cell Proliferation , Ikaros Transcription Factor/metabolism , Ikaros Transcription Factor/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Female , Gene Expression Regulation, Neoplastic , Male
5.
BMC Gastroenterol ; 24(1): 239, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075342

ABSTRACT

BACKGROUND: MutT homolog 1 (MTH1) sanitizes oxidized dNTP pools to promote the survival of cancer cells and its expression is frequently upregulated in cancers. Polyubiquitination stabilizes MTH1 to facilitate the proliferation of melanoma cells, suggesting the ubiquitin system controls the stability and function of MTH1. However, whether ubiquitination regulates MTH1 in gastric cancers has not been well defined. This study aims to investigate the interaction between MTH1 and a deubiquitinase, USP9X, in regulating the proliferation, survival, migration, and invasion of gastric cancer cells. METHODS: The interaction between USP9X and MTH1 was evaluated by co-immunoprecipitation (co-IP) in HGC-27 gastric cancer cells. siRNAs were used to interfere with USP9X expression in gastric cancer cell lines HGC-27 and MKN-45. MTT assays were carried out to examine the proliferation, propidium iodide (PI) and 7-AAD staining assays were performed to assess the cell cycle, Annexin V/PI staining assays were conducted to examine the apoptosis, and transwell assays were used to determine the migration and invasion of control, USP9X-deficient, and USP9X-deficient plus MTH1-overexpressing HGC-27 and MKN-45 gastric cancer cells. RESULTS: Co-IP data show that USP9X interacts with and deubiquitinates MTH1. Overexpression of USP9X elevates MTH1 protein level by downregulating its ubiquitination, while knockdown of USP9X has the opposite effect on MTH1. USP9X deficiency in HGC-27 and MKN-45 cells causes decreased proliferation, cell cycle arrest, extra apoptosis, and defective migration and invasion, which could be rescued by excessive MTH1. CONCLUSION: USP9X interacts with and stabilizes MTH1 to promote the proliferation, survival, migration and invasion of gastric cancer cells.


Subject(s)
Cell Movement , Cell Proliferation , DNA Repair Enzymes , Neoplasm Invasiveness , Phosphoric Monoester Hydrolases , Stomach Neoplasms , Ubiquitin Thiolesterase , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Cell Proliferation/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Ubiquitination , Cell Survival , Apoptosis , RNA, Small Interfering
6.
J Hazard Mater ; 474: 134800, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850955

ABSTRACT

Microplastics have emerged as a prominent global environmental contaminant, and they have been found in both human placenta and breast milk. However, the potential effects and mechanisms of maternal exposure to microplastics at various gestational stages on offspring neurodevelopment remain poorly understood. This investigation delves into the potential neurodevelopmental ramifications of maternal exposure to polystyrene nanoplastics (PS-NPs) during distinct phases of pregnancy and lactation. Targeted metabolomics shows that co-exposure during both pregnancy and lactation primarily engendered alterations in monoamine neurotransmitters within the cortex and amino acid neurotransmitters within the hippocampus. After prenatal exposure to PS-NPs, fetal rats showed appreciably diminished cortical thickness and heightened cortical cell proliferation. However, this exposure did not affect the neurodifferentiation of radial glial cells and intermediate progenitor cells. In addition, offspring are accompanied by disordered neocortical migration, typified by escalated superficial layer neurons proliferation and reduced deep layer neurons populations. Moreover, the hippocampal synapses showed significantly widened synaptic clefts and diminished postsynaptic density. Consequently, PS-NPs culminated in deficits in anxiolytic-like behaviors and spatial memory in adolescent offspring, aligning with concurrent neurotransmitter and synaptic alterations. In conclusion, this study elucidates the sensitive windows of early-life nanoplastic exposure and the consequential impact on offspring neurodevelopment.


Subject(s)
Lactation , Maternal Exposure , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Lactation/drug effects , Maternal Exposure/adverse effects , Hippocampus/drug effects , Hippocampus/growth & development , Polystyrenes/toxicity , Male , Microplastics/toxicity , Rats, Sprague-Dawley , Rats , Neurons/drug effects , Cell Proliferation/drug effects , Neurotransmitter Agents/metabolism , Nanoparticles/toxicity , Brain/drug effects , Brain/growth & development
7.
Sci Data ; 11(1): 689, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926386

ABSTRACT

Coal is one of the most important fossil energy sources and is ensuring global energy security. Annual maximum NDVI (Normalized Difference Vegetation Index) data is an important indicator for the research in balancing coal mining and vegetation conservation. However, the existing annual maximum NDVI data displayed lower values with temporally inconsistent and a noticeable mosaic line. Here we propose an algorithm for automatically generating the annual maximum NDVI of China's coal bases in Google Earth Engine called: Auto-NDVIcb. The accuracy of the Auto-NDVIcb algorithm has been verified with an average RMSE of 0.087 for the 14 coal bases from 2013 to 2022. Based on the proposed Auto-NDVIcb algorithm, an annual maximum NDVI dataset for all 14 coal bases in China from 2013 to 2022 was publicly released. This dataset can be fast and automatically updated online. Hence, the public dataset will continuously serve to monitor the vegetation change induced by coal mining, exploring the mechanism of vegetation degradation, and providing scientific data for developing vegetation protection policies in coal mines.

8.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832658

ABSTRACT

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Subject(s)
Milk , Pasteurization , Animals , Pasteurization/methods , Milk/virology , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Humans , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Virus Inactivation , United States , Influenza, Human/virology , Influenza, Human/transmission , Influenza, Human/prevention & control , Influenza A virus/genetics , Influenza A virus/isolation & purification , Female
9.
Mitochondrion ; 78: 101920, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876297

ABSTRACT

Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.

10.
ACS Appl Mater Interfaces ; 16(25): 32611-32618, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864643

ABSTRACT

Membrane with remarkable proton conductance and selectivity plays a key role in obtaining high vanadium flow battery (VFB) performance. In this work, the trade-off effect between proton conductance and vanadium ion blocking was overcome by the introduction of a cross-linking structure to prepare covalent cross-linked fluorine-containing sulfonated polyimide (CFSPI-PVA) membranes. Herein, the CFSPI-PVA-15 membrane possesses excellent comprehensive properties, including acceptable area resistance (0.21 Ω cm2), lower vanadium ion permeability (0.76 × 10-7 cm2 min-1), and remarkable proton selectivity (3.11 × 105 min cm-3) compared with the commercial Nafion 212 membrane. At the same time, the CFSPI-PVA-15 membrane exhibits higher coulomb efficiencies (97.26%-99.34%) and energy efficiencies (68.65%-88.11%) and a longer self-discharge duration (29.2 h) in contrast with the Nafion 212 membrane. Moreover, 500 cycles of the CFSPI-PVA-15 membrane at 160 mA cm-2 are also stably executed. The internal reasons for the improved chemical stability of the CFSPI-PVA-15 membrane are clarified from theoretical calculations with the mean square displacement value and fractional free volume. Therefore, the CFSPI-PVA-15 membrane exhibits great potential for application in VFB.

11.
Chin J Nat Med ; 22(5): 416-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38796215

ABSTRACT

Bazi Bushen (BZBS), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy in testicular dysfunction within D-galactose and NaNO2 mouse models. This study aimed to ascertain if BZBS could also mitigate the decline in testicular function associated with natural aging. Therefore, male aged mice were employed to evaluate the preventive effects of BZBS on male reproductive aging. This was achieved by assessing sex hormone production, testicular histomorphology, and spermatogenesis. Relative to the untreated aged control group, BZBS administration elevated the levels of sex hormones and spermatocyte populations and preserved normal testicular structure in aged mice. Notably, spermatogenesis was maintained. Further analyses, including malondialdehyde (MDA) assays and real-time PCR, indicated that BZBS diminished testicular oxidative stress and the inflammatory burden. Corroborating these findings, mice treated with BZBS exhibited reductions in the populations of senescent and apoptotic cells within the seminiferous tubules, suggesting alleviated cellular damage. In contrast, we observed that rapamycin, a drug known for its longevity benefits, induced excessive testicular apoptosis and did not decrease lipid peroxidation. Collectively, our results highlight BZBS's promising clinical potential in counteracting male reproductive aging, underlining its mechanisms of action.


Subject(s)
Aging , Drugs, Chinese Herbal , Oxidative Stress , Spermatogenesis , Testis , Animals , Male , Mice , Aging/drug effects , Drugs, Chinese Herbal/pharmacology , Testis/drug effects , Testis/metabolism , Oxidative Stress/drug effects , Spermatogenesis/drug effects , Reproduction/drug effects , Apoptosis/drug effects , Humans , Malondialdehyde/metabolism , Gonadal Steroid Hormones/metabolism
13.
Medicine (Baltimore) ; 103(21): e38236, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787986

ABSTRACT

BACKGROUND: Semaglutide, as an innovative weekly formulation, has attracted much attention. Nevertheless, the predominant occurrence of gastrointestinal adverse events (GIAEs) poses a noteworthy challenge linked to the use of this medication, substantially affecting its clinical applicability and the overall well-being of patients. Therefore, this systematic review aims to comprehensively discuss the GIAEs, providing a basis for clinical therapeutic decisions. METHODS: We systematically searched 4 independent databases for randomized controlled trials investigating the application of semaglutide in managing type 2 diabetes mellitus. The search period spanned from the inception of the databases to December 2023. We conducted a comprehensive meta-analysis, employing Review Manager 5.4.1 software, to systematically analyze and evaluate potential biases. Our primary emphasis was on assessing the gastrointestinal safety profile of semaglutide. RESULTS: The outcomes unveiled a noteworthy rise in the collective occurrence of GIAEs across all dosage groups of semaglutide in comparison with the control group (P < .05). Upon further analysis, it was observed that semaglutide showed a heightened occurrence of GIAEs in contrast to the placebo. However, statistically significant distinction was not observed when compared to the reduction of conventional doses or the transition to other types of glucagon-like peptide-1 receptor agonist. Additionally, an extended treatment duration with semaglutide (>30 weeks) demonstrated an association with a certain degree of decrease in the incidence of gastrointestinal events. Funnel plot assessment for publication bias demonstrated high-quality inclusion of studies with no apparent publication bias. CONCLUSION: The frequency of GIAEs in using semaglutide was observed to be elevated in comparison to the control group. However, it was comparable to other glucagon-like peptide-1 receptor agonist or low-dose treatment regimens. Additionally, an extended treatment duration played a role in decreasing the frequency of GIAEs. These findings provide valuable insights for clinical practice. Nonetheless, further research is crucial to explore supplementary data indicators, informing clinical practices and better serving the interests of patients.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Diseases , Glucagon-Like Peptides , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/adverse effects , Glucagon-Like Peptides/administration & dosage , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Gastrointestinal Diseases/chemically induced , Randomized Controlled Trials as Topic
14.
Ecotoxicol Environ Saf ; 278: 116393, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714083

ABSTRACT

Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.


Subject(s)
Brain , Myelin Sheath , Polystyrenes , Animals , Female , Pregnancy , Brain/drug effects , Brain/embryology , Brain/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Rats , Polystyrenes/toxicity , Environmental Pollutants/toxicity , Myelin Basic Protein/metabolism , Maternal Exposure , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Rats, Sprague-Dawley , Maternal-Fetal Exchange , Fetus/drug effects
15.
Dalton Trans ; 53(20): 8604-8607, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38690878

ABSTRACT

Inspired by the carbon monoxide dehydrogenase (CODH) active site where two metal ions synergistically catalyze the interconversion between CO2 and CO, we have developed a family of rhenium dipyridine derivatives (1-3), in which potassium 1-aza-18-crown-6-ether (KN18C6) moiety functions as a Lewis acid to assist the CO2 reduction reaction (CO2RR). We found that such design leads to dramatically strong deposition on the electrode under CO2 in the presence of potassium cation, and a clear trend for the deposition rate was observed following the flexibility of linkage between the framework and the KN18C6 moiety; the more flexible, the faster. The origin of deposition was further characterized by a series of control experiments and infrared spectroelectrochemistry (IR-SEC). Unfortunately, the deposition suppresses the subsequent C-O bond cleavage reaction.

16.
Adv Sci (Weinh) ; 11(24): e2307754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605600

ABSTRACT

Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Immunotherapy , Precision Medicine , Animals , Mice , Immunotherapy/methods , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Antigens, Neoplasm/immunology , Precision Medicine/methods , Peptides/immunology , Mice, Inbred C57BL , Disease Models, Animal , Cell Line, Tumor , Nanoparticles/chemistry , Humans , Female , Neoplasms/immunology , Neoplasms/therapy , Drug Delivery Systems/methods
17.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38629574

ABSTRACT

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Subject(s)
Chickens , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Vaccination , Animals , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Mice , Humans , China , Evolution, Molecular , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Mice, Inbred BALB C , Virulence , Phylogeny , Female , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry/virology
18.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
19.
Chemosphere ; 357: 142068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636921

ABSTRACT

Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.


Subject(s)
Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid , Sewage/microbiology , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Nitrogen/analysis , Bioreactors/microbiology , Anaerobiosis , Nitrification , Denitrification , Wastewater/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Oxygen/analysis , Oxygen/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
20.
Synth Syst Biotechnol ; 9(3): 426-435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38601209

ABSTRACT

Xylanase, an enzyme capable of hydrolyzing non-starch polysaccharides found in grain structures like wheat, has been found to improve the organizational structure of dough and thus increase its volume. In our past work, one promising xylanase FXYL derived from Fusarium oxysporum Fo47 and first expressed 779.64 U/mL activity in P. pastoris. It has shown significant potential in improving the quality of whole wheat bread, making it become a candidate for development as a new flour improver. After optimization of expression elements and gene dose, the xylanase activity of FXYL strain carrying three-copies reached 4240.92 U/mL in P. pastoris. In addition, 12 factors associated with the three stages of protein expression pathway were co-expressed individually in order in three-copies strain, and the translation factor Pab1 co-expression increased FXYL activity to 8893.53 U/mL. Nevertheless, combining the most effective or synergistic factors from three stages did not exhibit better results than co-expressing them alone. To further evaluate the industrial potential, the xylanase activity and protein concentration reached 81184.51 U/mL and 11.8 g/L in a 5 L fed-batch fermenter. These engineering strategies improved the expression of xylanase FXYL by more than 104-fold, providing valuable insights for the cost-effective industrial application of FXYL in the baking field.

SELECTION OF CITATIONS
SEARCH DETAIL