Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
2.
Spine (Phila Pa 1976) ; 38(24): 2079-84, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24026150

ABSTRACT

STUDY DESIGN: To inhibit ß-catenin specifically signaling in chondrocytes Col2-ICAT transgenic mice were generated. Anomalies in caudal vertebrae were detected during embryonic and postnatal stages of Col2-ICAT transgenic mice. OBJECTIVE: To determine the role of canonical ß-catenin signaling in caudal vertebral development. SUMMARY OF BACKGROUND DATA: ß-catenin signaling plays a critical role in skeletal development. Col2-ICAT transgenic mice were generated to selectively block ß-catenin signaling by overexpression of the ICAT gene in chondrocytes. METHODS: Tails of E16.5 transgenic embryos and adult Col2-ICAT transgenic mice and their wild-type littermates were collected and analyzed. Skeletal preparation, 3-dimensional micro-computed tomographic and histological analyses were performed to evaluate changes in the structure of caudal vertebrae. Bromodeoxyuridine labeling was performed to evaluate changes in chondrocyte proliferation in caudal vertebrae. RESULTS: Skeletal preparation and 3-dimensional micro-computed tomographic analyses revealed bone deformation and angulated deformities in tail tissue in Col2-ICAT transgenic mice. Histological studies revealed abnormal bone development and dysplastic caudal vertebrae in Col2-ICAT transgenic mice. Inhibition of ß-catenin signaling in cartilage resulted in vertebral dysplasia leading to aberrant resegmenting process. Thus, 2 poorly developed sclerotomes failed to fuse to form a complete vertebrae. BrdU labeling revealed a decreased chondrocyte proliferation in both cartilageous templates of transgenic embryos and the growth plate of adult Col2-ICAT transgenic mice. CONCLUSION: Wnt/ß-catenin signaling plays an important role in vertebral development. Inhibition of ß-catenin signaling in chondrocytes results in caudal vertebra deformity in mice, which may occur as early as in the stage of sclerotome formation. LEVEL OF EVIDENCE: N/A.


Subject(s)
Chondrocytes/metabolism , Signal Transduction , Spine/metabolism , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Chondrocytes/cytology , Collagen Type II/genetics , Embryo, Mammalian/abnormalities , Embryo, Mammalian/metabolism , Enhancer Elements, Genetic/genetics , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic/genetics , Repressor Proteins , Spine/abnormalities , Spine/diagnostic imaging , Tail/abnormalities , Tail/diagnostic imaging , Tail/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , X-Ray Microtomography , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL