Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cells ; 13(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273040

ABSTRACT

Aging is an inevitable biological process that contributes to the onset of age-related diseases, often as a result of mitochondrial dysfunction. Understanding the mechanisms behind aging is crucial for developing therapeutic interventions. This study investigates the effects of curcumin on postmitotic cellular lifespan (PoMiCL) during chronological aging in yeast, a widely used model for human postmitotic cellular aging. Our findings reveal that curcumin significantly prolongs the PoMiCL of wildtype yeast cells, with the most pronounced effects observed at lower concentrations, indicating a hormetic response. Importantly, curcumin also extends the lifespan of postmitotic cells with mitochondrial deficiencies, although the hormetic effect is absent in these defective cells. Mechanistically, curcumin inhibits TORC1 activity, enhances ATP levels, and induces oxidative stress. These results suggest that curcumin has the potential to modulate aging and offer therapeutic insights into age-related diseases, highlighting the importance of context in its effects.


Subject(s)
Curcumin , Mitochondria , Saccharomyces cerevisiae , Curcumin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Oxidative Stress/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Adenosine Triphosphate/metabolism , Humans , Cellular Senescence/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Transcription Factors
2.
J Laparoendosc Adv Surg Tech A ; 34(9): 845-850, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150373

ABSTRACT

Background: Lumbar hernia is a rare disease with low incidence, and no golden standard surgical procedure has been established for lumbar hernias. The single-incision laparoscopic totally extraperitoneal sublay (SIL-TES) technique became a novel surgical technique for lumbar hernias. Methods: This retrospective study included 20 patients who underwent SIL-TES repair for lumbar hernia between April 2020 and March 2024. The baseline patient characteristics, intraoperative data, postoperative data, satisfaction score, and Carolina Comfort Scale scores were collected. Results: The results revealed that the SIL-TES technique for lumbar hernia repair is associated with a low complication rate, nonrecurrence, high satisfaction score, and high quality of life after surgery. Conclusions: The SIL-TES technique could be a feasible and effective surgical technique for lumbar hernias. A controlled study is needed for further confirmation.


Subject(s)
Herniorrhaphy , Laparoscopy , Humans , Laparoscopy/methods , Female , Retrospective Studies , Male , Middle Aged , Herniorrhaphy/methods , Aged , Adult , Lumbosacral Region/surgery , Quality of Life , Treatment Outcome
3.
Mamm Genome ; 35(3): 399-413, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38886201

ABSTRACT

Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10-2), Lactobacillus (P = 2.11 × 10-2), Prevotella 7 (P = 4.28 × 10-2), and RuminococcaceaeUCG004 (P = 4.34 × 10-2) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10-3) and RuminococcaceaeUCG004 (P = 4.99 × 10-2) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10-2), Holdemania (P = 1.22 × 10-2), and Lactococcus (P = 3.39 × 10-2) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10-2) and Actinomyces (P = 3.62 × 10-3) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound significance for screening BE patients who may be at risk of deterioration, as it can provide them with timely medical interventions to reverse the condition.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Barrett Esophagus/genetics , Barrett Esophagus/microbiology , Barrett Esophagus/pathology , Gastrointestinal Microbiome/genetics , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/pathology
4.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713053

ABSTRACT

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Subject(s)
Cellular Senescence , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Gene Deletion , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/metabolism , Mitochondria/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics
5.
Insects ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786869

ABSTRACT

Genetic mutations leading to premature termination codons are known to have detrimental effects. Using the Lepidoptera model insect, the silkworm (Bombyx mori), we explored the genetic compensatory response triggered by mutations with premature termination codons. Additionally, we delved into the molecular mechanisms associated with the nonsense-mediated mRNA degradation pathway. CRISPR/Cas9 technology was utilized to generate a homozygous bivoltine silkworm line BmTrpA1-/- with a premature termination. Transcript levels were assessed for the BmTrpA paralogs, BmPyrexia and BmPainless as well as for the essential factors Upf1, Upf2, and Upf3a involved in the nonsense-mediated mRNA degradation (NMD) pathway. Upf2 was specifically knocked down via RNA interference at the embryonic stage. The results comfirmed that the BmTrpA1 transcripts with a 2-base deletion generating a premature termination codon in the BmTrpA1-/- line. From day 6 of embryonic development, the mRNA levels of BmPyrexia, BmPainless, Upf1, and Upf2 were significantly elevated in the gene-edited line. Embryonic knockdown of Upf2 resulted in the suppression of the genetic compensation response in the mutant. As a result, the offspring silkworm eggs were able to hatch normally after 10 days of incubation, displaying a non-diapause phenotype. It was observed that a genetic compensation response does exist in BmTrpA1-/-B. mori. This study presents a novel discovery of the NMD-mediated genetic compensation response in B. mori. The findings offer new insights into understanding the genetic compensation response and exploring the gene functions in lepidopteran insects, such as silkworms.

6.
Sci Rep ; 14(1): 11276, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760411

ABSTRACT

The joint made of cast steel is frequently utilized within a treelike column structure to ensure a smooth transition. It is of great significance in ensuring the overall structural safety, but currently, the mechanical property and bearing capacity of this type of joint cannot be fully understood. This study investigates the load characteristics of three-forked cast steel joints through concrete experiments, finite element analysis, and regression method formula derivation, filling the gap in mechanical properties and calculation formulas of forked cast steel joints. Initially, a comprehensive model of the cast-steel joint, sourced from a practical engineering, underwent vertical load testing. Detailed scrutiny of stress distribution and vertical displacement of the tested joint was conducted based on the experimental outcomes. Subsequently, a finite element model of the tested joint was constructed using SolidWorks and subjected to analysis via ANSYS. The numerical findings were juxtaposed with experimental data and extrapolated to encompass other parametric scenarios. Ultimately, a regression analysis method was employed to derive a calculation formula for the load-carrying capacity of branch-bearing cast-steel joints. The regression analysis method can accurately obtain the load-bearing capacity calculation formula for tree-shaped joint models and can be extended to determine corresponding branch and main pipe dimensions, as well as the deviation angle between branches and the main pipe, under known load conditions. This improves design efficiency and accuracy. Comparative analysis reveals a substantial concurrence among experimental, finite element analysis, and formula-based predictive outcomes. The maximum error between experimental results and those obtained from finite element analysis is 9.02%. The maximum error between the results calculated using the load-bearing capacity formula derived from regression methods and those from finite element analysis is only 1.9%.

7.
Phytomedicine ; 128: 155431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537440

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Subject(s)
Abietanes , Carcinoma, Non-Small-Cell Lung , Endoplasmic Reticulum Stress , Lung Neoplasms , NFATC Transcription Factors , Abietanes/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals , Humans , Lung Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Mice , NFATC Transcription Factors/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Mas , B7-H1 Antigen/metabolism , Xenograft Model Antitumor Assays , Programmed Cell Death 1 Receptor , Immunotherapy/methods , JNK Mitogen-Activated Protein Kinases/metabolism , A549 Cells , Mice, Nude , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc/metabolism , Male , Female
8.
Clin Pharmacokinet ; 63(4): 483-496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424308

ABSTRACT

BACKGROUND AND OBJECTIVES: Encorafenib is a kinase inhibitor indicated for the treatment of patients with unresectable or metastatic melanoma or metastatic colorectal cancer, respectively, with selected BRAF V600 mutations. A clinical drug-drug interaction (DDI) study was designed to evaluate the effect of encorafenib on rosuvastatin, a sensitive substrate of OATP1B1/3 and breast cancer resistance protein (BCRP), and bupropion, a sensitive CYP2B6 substrate. Coproporphyrin I (CP-I), an endogenous substrate for OATP1B1, was measured in a separate study to deconvolute the mechanism of transporter DDI. METHODS: DDI study participants received a single oral dose of rosuvastatin (10 mg) and bupropion (75 mg) on days - 7, 1, and 14 and continuous doses of encorafenib (450 mg QD) and binimetinib (45 mg BID) starting on day 1. The CP-I data were collected from participants in a phase 3 study who received encorafenib (300 mg QD) and cetuximab (400 mg/m2 initial dose, then 250 mg/m2 QW). Pharmacokinetic and pharmacodynamic analysis was performed using noncompartmental and compartmental methods. RESULTS: Bupropion exposure was not increased, whereas rosuvastatin Cmax and area under the receiver operating characteristic curve (AUC) increased approximately 2.7 and 1.6-fold, respectively, following repeated doses of encorafenib and binimetinib. Increase in CP-I was minimal, suggesting that the primary effect of encorafenib on rosuvastatin is through BCRP. Categorization of statins on the basis of their metabolic and transporter profile suggests pravastatin would have the least potential for interaction when coadministered with encorafenib. CONCLUSION: The results from these clinical studies suggest that encorafenib does not cause clinically relevant CYP2B6 induction or inhibition but is an inhibitor of BCRP and may also inhibit OATP1B1/3 to a lesser extent. Based on these results, it may be necessary to consider switching statins or reducing statin dosage accordingly for coadministration with encorafenib. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT03864042, registered 6 March 2019.


Subject(s)
Bupropion , Carbamates , Coproporphyrins , Drug Interactions , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rosuvastatin Calcium , Sulfonamides , Adult , Aged , Female , Humans , Male , Middle Aged , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Bupropion/administration & dosage , Bupropion/pharmacokinetics , Carbamates/administration & dosage , Carbamates/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Aged, 80 and over
9.
PLoS One ; 19(1): e0296416, 2024.
Article in English | MEDLINE | ID: mdl-38166022

ABSTRACT

In sorghum [Sorghum bicolor (L.) Moench], combining ability and heterosis analysis are commonly used to evaluate superior parental lines and to screen for strongly heterotic hybrids, which helps in sorghum variety selection and breeding. In this context, combining ability and heterosis analysis were assessed using 14 restorer lines and seven cytoplasmic male sterile (CMS) lines in 2019 and 2020. The analysis of variance of all cross combinations had highly significant differences for all characters studied, which indicated a wide variation across the parents, lines, testers, and crosses. Combining ability analysis showed that the general combining ability (GCA) and specific combining ability (SCA) of the different parents were differed significantly among different traits. Most combinations with high SCA also showed high GCA in their parent lines. The heritability in the narrow sense of grain weight per panicle and grain yield was relatively low, indicating that the ability of these traits to be directly inherited by offspring was weak, that they were greatly affected by the environment. The better-parent heterosis for plant height, grain weight per panicle, panicle length, and 1000-grain weight was consistent with the order of mid-parent heterosis from strong to weak. The GCA effects of two lines 10480A, 3765A and three testers 0-30R, R111, and JY15R were significant for the majority of the agronomic traits including grain yield and might be used for improving the yield of grains in sorghum as parents of excellent specific combining ability. Seven strongly heterotic F1 hybrids were screened; of these, hybrids 3765A × R111, 1102A × L2R, and 3765A × JY15R showed significant increases in seed iristectorigenin A content and will feature into the creation of new sorghum varieties rich in iristectorigenin A.


Subject(s)
Hybrid Vigor , Sorghum , Hybrid Vigor/genetics , Sorghum/genetics , Plant Breeding , Phenotype , Edible Grain
10.
Biol Direct ; 19(1): 8, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38254217

ABSTRACT

Gerontology research on anti-aging interventions with drugs could be an answer to age-related diseases, aiming at closing the gap between lifespan and healthspan. Here, we present two methods for assaying chronological lifespan in human cells: (1) a version of the classical outgrowth assay with quantitative assessment of surviving cells and (2) a version of the PICLS method (propidium iodide fluorescent-based measurement of cell death). Both methods are fast, simple to conduct, cost-effective, produce quantitative data for further analysis and can be used with diverse human cell lines. Whereas the first method is ideal for validation and testing the post-intervention reproductive potential of surviving cells, the second method has true high-throughput screening potential. The new technologies were validated with known anti-aging compounds (2,5-anhydro-D-mannitol and rapamycin). Using the high-throughput screening method, we screened a library of 162 chemical entities and identified three compounds that extend the longevity of human cells.


Subject(s)
High-Throughput Screening Assays , Longevity , Humans , Cell Line , Mannitol , Reproduction
11.
Immunol Rev ; 321(1): 128-142, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37553793

ABSTRACT

Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Immunogenic Cell Death , Antineoplastic Agents/therapeutic use , Cell Death , Immunotherapy
12.
J Clin Pharmacol ; 64(4): 449-460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37840155

ABSTRACT

Danuglipron (PF-06882961) is an oral, small-molecule glucagon-like peptide-1 receptor agonist in development for the treatment of type 2 diabetes (T2D) and obesity. Impaired renal function is prevalent in patients with T2D. This Phase 1, open-label study evaluated the effect of renal impairment on the pharmacokinetics, safety, and tolerability of danuglipron (20 mg) in healthy participants with normal renal function (estimated glomerular filtration rate [eGFR] unnormalized for body surface area: ≥90 mL/min), in participants with T2D and normal renal function (eGFR ≥90 mL/min), and in participants with T2D and mild (eGFR 60-89 mL/min), moderate (eGFR 30-59 mL/min), or severe (eGFR <30 mL/min) renal impairment (N = 39). Log-linear regression analyses and analyses of variance showed no evidence of a clinically significant effect of reduced renal function on danuglipron pharmacokinetics. Renal clearance of unchanged danuglipron was minimal (<1% across all renal function groups). Danuglipron pharmacokinetics were similar between healthy participants and participants with T2D and normal renal function. A single 20-mg oral dose of danuglipron was generally safe and well tolerated in all participant groups. In participants with T2D, renal impairment had no clinically meaningful effect on the pharmacokinetic, safety, and tolerability profiles of danuglipron, indicating that dose adjustment of danuglipron will not be required when administered to patients with T2D and reduced renal function.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency , Humans , Diabetes Mellitus, Type 2/drug therapy , Renal Insufficiency/drug therapy , Hypoglycemic Agents/therapeutic use , Glomerular Filtration Rate , Area Under Curve
14.
Environ Sci Pollut Res Int ; 31(3): 4140-4153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102422

ABSTRACT

The facile fabrication of low-cost adsorbents possessing high removal efficiency and convenient separation property is an urgent need for water treatment. Herein, magnetic activated carbon was synthesized from spent coffee grounds (SCG) by Fe-catalyzed CO2 activation at 800 °C for 90 min, and magnetization and pore formation were simultaneously achieved during heat treatment. The sample was characterized by N2 adsorption-desorption, XRD, VSM, SEM, and FTIR. Batch adsorption experiments were conducted using lomefloxacin (LMO) as the probing pollutant. Preparation mechanism was revealed by TG-FTIR and XRD. Experimental results showed that Fe3O4 derived from Fe species can be reduced to Fe by carbon at high temperatures, followed by subsequent reoxidation to Fe3O4 by CO2, and the redox cycle between Fe and Fe3O4 favored the formation of pores. The promotion effects of Fe species on CO2 activation can be quantitatively reflected by the yield of CO as the signature gaseous product, and the suitable activation temperate range was determined to be 675 to 985 °C. The BET surface area, total pore volume, and saturated magnetization value of the product were 586 m2 g-1, 0.327 cm3 g-1, and 11.59 emu g-1, respectively. The Langmuir model was applicable for the adsorption isotherm data for LMO with the maximum adsorption capacity of 95 mg g-1, and thermodynamic analysis revealed that the adsorption process was endothermic and spontaneous. This study demonstrated that Fe-catalyzed CO2 activation was an effective method of converting SCG into magnetic separable adsorbent for LMO removal from aqueous medium.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/analysis , Charcoal/analysis , Coffee , Carbon Dioxide/analysis , Iron/analysis , Magnetic Phenomena , Catalysis , Water Pollutants, Chemical/analysis , Kinetics
15.
Foods ; 12(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37959146

ABSTRACT

Ultrasound has been widely used as a green and efficient non-thermal processing technique to assist with enzymatic hydrolysis. Compared with traditional enzymatic hydrolysis, ultrasonic-pretreatment-assisted enzymatic hydrolysis can significantly improve the efficiency of enzymatic hydrolysis and enhance the biological activity of substrates. At present, this technology is mainly used for the extraction of bioactive substances and the degradation of biological macromolecules. This review is focused on the mechanism of enzymatic hydrolysis assisted by ultrasonic pretreatment, including the effects of ultrasonic pretreatment on the enzyme structure, substrate structure, enzymatic hydrolysis kinetics, and thermodynamics and the effects of the ultrasonic conditions on the enzymatic hydrolysis results. The development status of ultrasonic devices and the application of ultrasonic-assisted enzymatic hydrolysis in the food industry are briefly described in this study. In the future, more attention should be paid to research on ultrasound-assisted enzymatic hydrolysis devices to promote the expansion of production and improve production efficiency.

16.
Cell Rep ; 42(10): 113205, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37792530

ABSTRACT

Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.


Subject(s)
Monomeric GTP-Binding Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Glucose/metabolism , Guanosine Triphosphate/metabolism
17.
Open Life Sci ; 18(1): 20220734, 2023.
Article in English | MEDLINE | ID: mdl-37872968

ABSTRACT

Melatonin is a potent antioxidant that can prevent plant damage caused by adverse stresses. It remains unclear whether exogenous melatonin can mitigate the effects of salt stress on seed germination and seedling growth of sorghum (Sorghum bicolor (L.) Moench). The aim of this study was to decipher the protective mechanisms of exogenous melatonin (100 µmol/L) on sorghum seedlings under NaCl-induced salt stress (120 mmol/L). Plant morphological, photosynthetic, and physiological characteristics were analyzed at different timepoints after sowing. Results showed that salt stress inhibited seed germination, seedling growth, and plant biomass accumulation by reducing photosynthetic pigment contents, photosynthetic efficiency, root vigor, and mineral uptake. In contrast, seed priming with melatonin enhanced photosynthetic pigment biosynthesis, photosynthetic efficiency, root vigor, and K+ content under salt stress. Melatonin application additionally enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and increased the levels of non-enzymatic antioxidants (reduced glutathione, ascorbic acid) in the leaves. These changes were accompanied by increase in the leaf contents of soluble sugars, soluble proteins, and proline, as well as decrease in hydrogen peroxide accumulation, malondialdehyde content, and electrolyte leakage. Our findings indicate that exogenous melatonin can alleviate salt stress-induced damage in sorghum seedlings through multifaceted mechanisms, such as improving photosynthetic performance and root vigor, facilitating ion homeostasis and osmoregulation, and promoting antioxidant defense and reactive oxygen species scavenging.

18.
Medicine (Baltimore) ; 102(32): e34543, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37565898

ABSTRACT

INTRODUCTION: Single-incision laparoscopic totally extraperitoneal hernioplasty is a commonly used surgical procedure for the treatment of inguinal hernia. However, it is difficult to use traditional single incision laparoscopic totally extraperitoneal hernioplasty to treat inguinal hernia after laparoscopic radical prostatectomy. We successfully and smoothly cured a patient with left inguinal hernia after laparoscopic radical prostatectomy using lateral single incision laparoscopic totally extraperitoneal hernioplasty. CASE PRESENTATION: We report the case of a 70-year-old man who underwent laparoscopic radical prostatectomy 2 years earlier and had an evanescent mass in the left inguinal region for 1 month. DIAGNOSIS: On the basis of preoperative abdominal computed tomography and intraoperative findings, the patient was diagnosed with a left indirect inguinal hernia, and post-laparoscopic radical prostatectomy. INTERVENTIONS: The patient underwent lateral single incision laparoscopic totally extraperitoneal hernioplasty. OUTCOMES: The patient recovered well after the operation, and there were no postoperative complications or recurrence of inguinal hernia 3 months after the operation. CONCLUSION: For patients who have undergone laparoscopic radical prostatectomy, lateral single-incision laparoscopic totally extraperitoneal hernioplastycan be performed.


Subject(s)
Hernia, Inguinal , Laparoscopy , Surgical Wound , Male , Humans , Aged , Herniorrhaphy/methods , Hernia, Inguinal/surgery , Hernia, Inguinal/complications , Laparoscopy/methods , Prostatectomy/methods , Treatment Outcome , Surgical Wound/complications
19.
J Environ Manage ; 344: 118441, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37379626

ABSTRACT

To realize sound disposal of hyperaccumulator harvested from phytoremediation, hydrothermal carbonization (HTC) has been employed to obtain superior hydrochar adsorbents for removal of phosphate and ammonium from water body. A series of hydrochars have been prepared under tuned HTC conditions to tailor hydrochar with desired properties. Generally, increased temperature and prolonged reaction time facilitated acidic oxygen functional groups on hydrochars, thereby improving adsorption capacity of hydrochar. In single solute system, a superior hydrochar, derived from HTC under 260 °C for 2 h, achieved a maximum phosphate and ammonium adsorption capacity of 52.46 mg/g and 27.56 mg/g at 45 °C, respectively. In binary system, synergistic adsorption was observed only in lower solute concentration, whereas competitive adsorption occurred under higher solute concentration. Characterization and adsorption kinetics suggested chemisorption may dominate the adsorption process, thus the adsorption capacity could be improved by tuning pHpzc of hydrochar. This study firstly demonstrates the sustainable utilization of hyperaccumulators into nutrients-enriched hydrochar as fertilizer for in-situ phytoremediation of contaminated sites with minimized environmental risks towards circular economy.


Subject(s)
Sedum , Nutrients , Adsorption , Kinetics , Phosphates , Carbon , Temperature
20.
PLoS One ; 18(5): e0285494, 2023.
Article in English | MEDLINE | ID: mdl-37163544

ABSTRACT

MicroRNAs (miRNAs) widely participate in plant growth and development. The miR396 family, one of the most conserved miRNA families, remains poorly understood in sorghum. To reveal the evolution and expression pattern of Sbi-miR396 gene family in sorghum, bioinformatics analysis and target gene prediction were performed on the sequences of the Sbi-miR396 gene family members. The results showed that five Sbi-miR396 members, located on chromosomes 4, 6, and 10, were identified at the whole-genome level. The secondary structure analysis showed that the precursor sequences of all five Sbi-miR396 potentially form a stable secondary stem-loop structure, and the mature miRNA sequences were generated on the 5' arm of the precursors. Sequence analysis identified the mature sequences of the five sbi-miR396 genes were high identity, with differences only at the 1st, 9th and 21st bases at the 5' end. Phylogenetic analysis revealed that Sbi-miR396a, Sbi-miR396b, and Sbi-miR396c were clustered into Group I, and Sbi-miR396d and Sbi-miR396e were clustered into Group II, and all five sbi-miR396 genes were closely related to those of maize and foxtail millet. Expression analysis of different tissue found that Sbi-miR396d/e and Sbi-miR396a/b/c were preferentially and barely expressed, respectively, in leaves, flowers, and panicles. Target gene prediction indicates that the growth-regulating factor family members (SbiGRF1/2/3/4/5/6/7/8/10) were target genes of Sbi-miR396d/e. Thus, Sbi-miR396d/e may affect the growth and development of sorghum by targeting SbiGRFs. In addition, expression analysis of different tissues and developmental stages found that all Sbi-miR396 target genes, SbiGRFs, were barely expressed in leaves, root and shoot, but were predominantly expressed in inflorescence and seed development stage, especially SbiGRF1/5/8. Therefore, inhibition the expression of sbi-miR396d/e may increase the expression of SbiGRF1/5/8, thereby affecting floral organ and seed development in sorghum. These findings provide the basis for studying the expression of the Sbi-mir396 family members and the function of their target genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Sorghum , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phylogeny , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL