Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.151
Filter
1.
Proc Natl Acad Sci U S A ; 121(34): e2404199121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39136985

ABSTRACT

Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.


Subject(s)
Oryza , Phosphates , Photosynthesis , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Phosphates/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Plants, Genetically Modified
2.
Medicine (Baltimore) ; 103(32): e39233, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121295

ABSTRACT

Epstein-Barr virus (EBV) infects over 95% of the global population and is strongly associated with various autoimmune diseases. Anti-nuclear antibodies (ANA) serve as valuable laboratory biomarkers for screening and supporting the diagnosis of various autoimmune diseases. The aim of this study was to assess the prevalence of EBV infection and its association with ANA. This retrospective study employed standard indirect immunofluorescence assay to determine ANA levels, EBV-specific immunofluorescence assay, or plasma EBV-DNA testing. Demographic data including gender and age were collected to observe variations in EBV infection status and ANA positivity rates among different populations. Incorporating 6492 hospitalized patients who underwent ANA antibody spectrum testing, it was observed that serum positivity rates gradually increased with age. The overall serum positivity rate of ANA in females (25.14%) was significantly higher than that in males (13.76%). Among hospitalized patients undergoing EBV-DNA testing, adults aged 21 to 40 years were least affected by EBV, with a positivity rate of 11.96%; however, as age increased, the positivity rate gradually increased. Among the 5225 patients undergoing EBV antibody spectrum testing, ANA-positive patients exhibited significantly higher serum positivity rates for Epstein-Barr nuclear antigen 1 immunoglobulin G, Epstein-Barr virus early antigen immunoglobulin G, Epstein-Barr virus early antigen immunoglobulin A, and Epstein-Barr virus viral capsid antigen immunoglobulin A antibodies compared to ANA-negative patients (P < .001; P < .001; P = .013; P < .001). The EBV-DNA positivity rate in ANA-positive patients was also significantly higher than in ANA-negative patients, yielding the same conclusion (P = .012). The positivity rates of ANA antibodies in patients with past EBV infection and reactivation were significantly higher than those in uninfected patients (P < .001; P = .006). The positivity rate of ANA antibodies in reactivated patients was significantly higher than that in primary infected patients and those with past infections (P < .001; P < .001). Among ANA-positive patients, the positivity rates of EBV antibody spectrum and EBV-DNA were higher compared to ANA-negative patients. The positivity rates of ANA in patients with past EBV infection and reactivation were higher than those in uninfected patients.


Subject(s)
Antibodies, Antinuclear , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/diagnosis , Female , Male , Antibodies, Antinuclear/blood , China/epidemiology , Adult , Cross-Sectional Studies , Middle Aged , Retrospective Studies , Young Adult , Adolescent , Child , Herpesvirus 4, Human/immunology , Aged , DNA, Viral/blood , Child, Preschool , Antibodies, Viral/blood , Infant , Prevalence
3.
Nanomicro Lett ; 16(1): 243, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990359

ABSTRACT

Nowadays, the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health, so stretchable electromagnetic interference (EMI) shielding materials are highly demanded. Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins. Inspired by the wrinkled skin of the elephant trunks, herein, we propose a winkled conductive film based on single-walled carbon nanotubes (SWCNTs) for multifunctional EMI applications. The conductive film has a sandwich structure, which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate. The shrinking-induced winkled conductive network could withstand up to 200% tensile strain. Typically, when the stretching direction is parallel to the polarization direction of the electric field, the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200% tensile strain. It is mainly contributed by the increased connection of the SWCNTs. In addition, the film also has good Joule heating performance at several voltages, capable of releasing pains in injured joints. This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.

4.
Brain Res Bull ; 215: 111035, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39069104

ABSTRACT

Stroke episodes represent a significant subset of cerebrovascular diseases globally, often resulting in diverse neurological impairments such as hemiparesis, spasticity, dysphagia, sensory dysfunction, cognitive impairment, depression, aphasia, and other sequelae. These dysfunctions markedly diminish patients' quality of life and impose substantial burdens on their families and society. Consequently, the restoration of neurological function post-stroke remains a primary objective of clinical treatment. Acupuncture, a traditional Chinese medicine technique, is endorsed by the World Health Organization (WHO) for stroke treatment due to its distinct advantages in managing cerebrovascular diseases, including ischemic stroke. Numerous clinical studies have substantiated the efficacy of acupuncture in ameliorating neurological dysfunctions following stroke. This review systematically examines the improvements in post-stroke neurological dysfunction attributable to acupuncture treatment and elucidates potential mechanisms of action proposed in recent years. Additionally, this article aims to present novel therapeutic concepts and strategies for the clinical management of post-stroke neurological dysfunction.


Subject(s)
Acupuncture Therapy , Stroke , Humans , Acupuncture Therapy/methods , Stroke/complications , Stroke/therapy , Nervous System Diseases/therapy , Nervous System Diseases/etiology , Quality of Life , Treatment Outcome
5.
Sci Rep ; 14(1): 16314, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009692

ABSTRACT

The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.


Subject(s)
Glucose , Graphite , Homeostasis , Infrared Rays , Physical Conditioning, Animal , Animals , Mice , Glucose/metabolism , Graphite/pharmacology , Graphite/chemistry , AMP-Activated Protein Kinases/metabolism , Male , Gastrointestinal Microbiome , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Hyperthermia, Induced/methods , Exercise Tolerance , Microbiota
7.
Sci Rep ; 14(1): 17664, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39085290

ABSTRACT

The utilization of high-risk test cases constitutes an effective approach to enhance the safety testing of autonomous vehicles (AVs) and enhance their efficiency. This research paper presents a derivation of 2052 high-hazard pre-crash scenarios for testing autonomous driving, which were based on 23 high-hazard cut-in accident scenarios from the National Automobile Accident In-Depth Investigation System (NAIS) through combining importance sampling and combined testing methods. Compared to the direct combination of the original distribution after sampling, the proposed method has a 2.92 times higher crash rate of 69.32% for the test case set in this paper. It also has a 5.8 times higher rate of triggering Automatic Emergency Braking (AEB), improving hazardous scenario coverage. Using the proposed method, the generated parameters of the cut-in accident scenario test set were compared with those of the cut-in test scenarios included in existing Chinese autonomous driving test protocols and standards. The velocity of the ego-vehicle obtained using the proposed method matched those in the existing protocols, whereas the velocity, time gap, and time to collision of the target vehicle were significantly lower than those existing protocols indicating scenarios obtained from accident data can enrich the selection of testing scenarios for autonomous driving.

8.
Langmuir ; 40(27): 13984-13994, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38913777

ABSTRACT

Strong metal-support interaction (SMSI), which has drawn widespread attention in heterogeneous catalysis, is thought to significantly affect the catalytic performance for volatile organic chemical (VOC) abatement. In the present study, strong interactions between platinum and ceria are constructed by modulating the oxygen vacancy concentration of CeO2 through a NaBH4 reduction method. For a catalyst with higher content of oxygen vacancy, more electrons would transfer from ceria to Pt, which is attributed to the stronger effect of SMSI. The obtained electron-richer Pt sites exhibit higher ability for toluene activation, contributing to better performance for toluene oxidation. On the other hand, the stronger metal-support interaction would facilitate CeOx species migrating to the Pt nanoparticle surface and forming an encapsulated structure. Smaller Pt dispersion leads to fewer sites for toluene adsorption and activation, which is to the disadvantage of the reaction. Therefore, taking the negative and positive effects together, the Pt/CeO2-0.5 catalyst has the highest catalytic performance for toluene abatement. Our study provides new insights into strong metal-support interaction on toluene oxidation and contributes to designing noble metal catalysts for VOC abatement.

9.
Med Phys ; 51(8): 5164-5180, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922912

ABSTRACT

Cone-beam CT (CBCT) is the most commonly used onboard imaging technique for target localization in radiation therapy. Conventional 3D CBCT acquires x-ray cone-beam projections at multiple angles around the patient to reconstruct 3D images of the patient in the treatment room. However, despite its wide usage, 3D CBCT is limited in imaging disease sites affected by respiratory motions or other dynamic changes within the body, as it lacks time-resolved information. To overcome this limitation, 4D-CBCT was developed to incorporate a time dimension in the imaging to account for the patient's motion during the acquisitions. For example, respiration-correlated 4D-CBCT divides the breathing cycles into different phase bins and reconstructs 3D images for each phase bin, ultimately generating a complete set of 4D images. 4D-CBCT is valuable for localizing tumors in the thoracic and abdominal regions where the localization accuracy is affected by respiratory motions. This is especially important for hypofractionated stereotactic body radiation therapy (SBRT), which delivers much higher fractional doses in fewer fractions than conventional fractionated treatments. Nonetheless, 4D-CBCT does face certain limitations, including long scanning times, high imaging doses, and compromised image quality due to the necessity of acquiring sufficient x-ray projections for each respiratory phase. In order to address these challenges, numerous methods have been developed to achieve fast, low-dose, and high-quality 4D-CBCT. This paper aims to review the technical developments surrounding 4D-CBCT comprehensively. It will explore conventional algorithms and recent deep learning-based approaches, delving into their capabilities and limitations. Additionally, the paper will discuss the potential clinical applications of 4D-CBCT and outline a future roadmap, highlighting areas for further research and development. Through this exploration, the readers will better understand 4D-CBCT's capabilities and potential to enhance radiation therapy.


Subject(s)
Cone-Beam Computed Tomography , Four-Dimensional Computed Tomography , Cone-Beam Computed Tomography/methods , Humans , Four-Dimensional Computed Tomography/methods , Radiotherapy, Image-Guided/methods , Respiration
10.
J Inflamm Res ; 17: 3603-3615, 2024.
Article in English | MEDLINE | ID: mdl-38855169

ABSTRACT

Background: Vascular adhesion protein-1 (VAP-1), an inflammation-inducible endothelial cell molecule, was reported to be implicated in a variety of cardiovascular diseases. However, the clinical significance of circulating VAP-1 levels in patients with coronary heart disease (CHD) remains less studied. Patients and Methods: We retrospectively analyzed clinical data of 336 hospitalized patients in the Second Affiliated Hospital of Soochow University from May 2020 to September 2022, 174 of which were diagnosed with CHD. Serum VAP-1 was measured by enzyme-linked immunosorbent assay at enrollment. The primary end point of this study was the occurrence of major adverse cardiovascular events (MACE). The coronary stenosis and clinical manifestations of CHD were assessed and recorded from medical records or follow-up calls. The relevant results were obtained, and the reliability of the conclusions was verified through regression analysis, curve fitting, and survival curve. Results: After adjusting for potential confounders, higher serum VAP-1 level was associated with increased risk of MACE in patients with CHD [(HR = 5.11, 95% CI = 1.02-25.59), (HR = 5.81, 95% CI = 1.16-29.11)]. The results of curve fitting and survival analysis were consistent with those of regression analysis. However, no significant association was observed between VAP-1 and MACE in the entire study population [(HR = 5.11, 95% CI = 0.41-1.93), (HR = 1.17, 95% CI = 0.52-2.62)]. Furthermore, the level of VAP-1 did not show a significant correlation with coronary stenosis and the clinical manifestations of CHD. Conclusion: These findings suggested that CHD patients with higher serum levels of VAP-1 are at a higher risk of adverse cardiovascular outcomes.

11.
Chem Commun (Camb) ; 60(53): 6728-6740, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38884278

ABSTRACT

Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.

12.
Phys Med Biol ; 69(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870947

ABSTRACT

Objective.Cone-beam computed tomography (CBCT) is widely used in image-guided radiotherapy. Reconstructing CBCTs from limited-angle acquisitions (LA-CBCT) is highly desired for improved imaging efficiency, dose reduction, and better mechanical clearance. LA-CBCT reconstruction, however, suffers from severe under-sampling artifacts, making it a highly ill-posed inverse problem. Diffusion models can generate data/images by reversing a data-noising process through learned data distributions; and can be incorporated as a denoiser/regularizer in LA-CBCT reconstruction. In this study, we developed a diffusion model-based framework, prior frequency-guided diffusion model (PFGDM), for robust and structure-preserving LA-CBCT reconstruction.Approach.PFGDM uses a conditioned diffusion model as a regularizer for LA-CBCT reconstruction, and the condition is based on high-frequency information extracted from patient-specific prior CT scans which provides a strong anatomical prior for LA-CBCT reconstruction. Specifically, we developed two variants of PFGDM (PFGDM-A and PFGDM-B) with different conditioning schemes. PFGDM-A applies the high-frequency CT information condition until a pre-optimized iteration step, and drops it afterwards to enable both similar and differing CT/CBCT anatomies to be reconstructed. PFGDM-B, on the other hand, continuously applies the prior CT information condition in every reconstruction step, while with a decaying mechanism, to gradually phase out the reconstruction guidance from the prior CT scans. The two variants of PFGDM were tested and compared with current available LA-CBCT reconstruction solutions, via metrics including peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).Main results.PFGDM outperformed all traditional and diffusion model-based methods. The mean(s.d.) PSNR/SSIM were 27.97(3.10)/0.949(0.027), 26.63(2.79)/0.937(0.029), and 23.81(2.25)/0.896(0.036) for PFGDM-A, and 28.20(1.28)/0.954(0.011), 26.68(1.04)/0.941(0.014), and 23.72(1.19)/0.894(0.034) for PFGDM-B, based on 120°, 90°, and 30° orthogonal-view scan angles respectively. In contrast, the PSNR/SSIM was 19.61(2.47)/0.807(0.048) for 30° for DiffusionMBIR, a diffusion-based method without prior CT conditioning.Significance. PFGDM reconstructs high-quality LA-CBCTs under very-limited gantry angles, allowing faster and more flexible CBCT scans with dose reductions.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Cone-Beam Computed Tomography/methods , Humans , Diffusion , Image Processing, Computer-Assisted/methods , Phantoms, Imaging
13.
Article in English | MEDLINE | ID: mdl-38837538

ABSTRACT

Habitat plays a crucial role in shaping the macroinvertebrate community structure in large shallow lakes. In the pursuit of improving the health of freshwater ecosystems, it is imperative to consider their habitat characteristics. To evaluate the impact of habitat variations on lake ecological health, we developed a macroinvertebrate-based multimetric index (MMI) for both the pelagic and littoral zones of Lake Hongze. Additionally, we employed structural equation models to explore the influence of utilization or phytoplankton biomass on ecological health. Historical data served as reference conditions for the pelagic. Seven key attributes were selected for the pelagic MMI, that is, Biological Monitoring Working Party (BMWP), the percentage of Mollusca taxa, the percentage of filter-collector taxa, the percentage of predator taxa, the percentage of gather-collector taxa, and the percentage of sensitive taxa and functional dispersion. The least minimally disturbed conditions and the best attainable conditions were used to develop the littoral. Four key metrics, that is, the percentage of scraper abundance, Mollusca taxa, Biological Pollution Index, and BMWP, were integrated into the littoral MMI. The assessment based on MMI revealed a "poor" health status for the pelagic zone and a "fair" health status for the littoral zone. These findings underscore the high applicability and efficacy of MMIs in assessing and monitoring ecological health in Lake Hongze. Notably, functional feeding groups exhibited heightened sensitivity to disturbance in both zones. Moreover, sediment organic matter strongly influenced the pelagic ecological health, while chlorophyll a and transparency emerged as primary factors influencing the littoral zone, attributable to varying littoral zone utilization. Integr Environ Assess Manag 2024;00:1-11. © 2024 SETAC.

15.
ACS Appl Mater Interfaces ; 16(19): 24987-24998, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712685

ABSTRACT

For traditional ferroelectric field-effect transistors (FeFETs), enhancing the polarization domain of bulk ferroelectric materials is essential to improve device performance. However, there has been limited investigation into the enhancement of polarization field in two-dimensional (2D) ferroelectric material such as CuInP2S6 (CIPS). In this study, similar to bulk ferroelectric materials, CIPS exhibited enhanced polarization field upon application of external cyclic voltage. Moreover, unlike traditional ferroelectric materials, the polarization enhancement of CIPS is not due to redistribution of the defect but rather originates from a mechanism: the long-distance migration of Cu ions. We termed this mechanism the "wake-up-like effect". After incorporating the wake-up-like effect into the graphene/CIPS/WSe2 FeFET device, we successfully increased the hysteresis window and enhanced the current on/off ratio by 4 orders of magnitude. Moreover, the FeFET yielded remarkable achievements, such as multilevel nonvolatile memory with 21 distinct conductance levels, a high on/off ratio exceeding 106, a long retention time exceeding 103 s, and neuromorphic computing with 93% accuracy at recognizing handwritten digits. Introducing the wake-up-like effect to 2D CIPS may pave the way for innovative approaches to achieve advanced multilevel nonvolatile memory and neuromorphic computing capabilities for next-generation micro-nanoelectronic devices.

16.
BMC Cardiovasc Disord ; 24(1): 257, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760695

ABSTRACT

BACKGROUND: This study aimed to investigate the potential association between the circadian rhythm of blood pressure and deceleration capacity (DC)/acceleration capacity (AC) in patients with essential hypertension. METHODS: This study included 318 patients with essential hypertension, whether or not they were being treated with anti-hypertensive drugs, who underwent 24-hour ambulatory blood pressure monitoring (ABPM). Patients were categorized into three groups based on the percentage of nocturnal systolic blood pressure (SBP) dipping: the dipper, non-dipper and reverse dipper groups. Baseline demographic characteristics, ambulatory blood pressure monitoring parameters, Holter recordings (including DC and AC), and echocardiographic parameters were collected. RESULTS: In this study, the lowest DC values were observed in the reverse dipper group, followed by the non-dipper and dipper groups (6.46 ± 2.06 vs. 6.65 ± 1.95 vs. 8.07 ± 1.79 ms, P < .001). Additionally, the AC gradually decreased (-6.32 ± 2.02 vs. -6.55 ± 1.95 vs. -7.80 ± 1.73 ms, P < .001). There was a significant association between DC (r = .307, P < .001), AC (r=-.303, P < .001) and nocturnal SBP decline. Furthermore, DC (ß = 0.785, P = .001) was positively associated with nocturnal SBP decline, whereas AC was negatively associated with nocturnal SBP (ß = -0.753, P = .002). By multivariate logistic regression analysis, deceleration capacity [OR (95% CI): 0.705 (0.594-0.836), p < .001], and acceleration capacity [OR (95% CI): 1.357 (1.141-1.614), p = .001] were identified as independent risk factors for blood pressure nondipper status. The analysis of ROC curves revealed that the area under the curve for DC/AC in predicting the circadian rhythm of blood pressure was 0.711/0.697, with a sensitivity of 73.4%/65.1% and specificity of 66.7%/71.2%. CONCLUSIONS: Abnormal DC and AC density were correlated with a blunted decline in nighttime SBP, suggesting a potential association between the circadian rhythm of blood pressure in essential hypertension patients and autonomic nervous dysfunction.


Subject(s)
Antihypertensive Agents , Blood Pressure Monitoring, Ambulatory , Blood Pressure , Circadian Rhythm , Essential Hypertension , Heart Rate , Humans , Male , Female , Middle Aged , Essential Hypertension/physiopathology , Essential Hypertension/diagnosis , Essential Hypertension/drug therapy , Time Factors , Antihypertensive Agents/therapeutic use , Aged , Predictive Value of Tests , Adult , Risk Factors , Electrocardiography, Ambulatory , Acceleration , Deceleration
17.
Phys Med Biol ; 69(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38697195

ABSTRACT

Objective. Dynamic cone-beam computed tomography (CBCT) can capture high-spatial-resolution, time-varying images for motion monitoring, patient setup, and adaptive planning of radiotherapy. However, dynamic CBCT reconstruction is an extremely ill-posed spatiotemporal inverse problem, as each CBCT volume in the dynamic sequence is only captured by one or a few x-ray projections, due to the slow gantry rotation speed and the fast anatomical motion (e.g. breathing).Approach. We developed a machine learning-based technique, prior-model-free spatiotemporal implicit neural representation (PMF-STINR), to reconstruct dynamic CBCTs from sequentially acquired x-ray projections. PMF-STINR employs a joint image reconstruction and registration approach to address the under-sampling challenge, enabling dynamic CBCT reconstruction from singular x-ray projections. Specifically, PMF-STINR uses spatial implicit neural representations to reconstruct a reference CBCT volume, and it applies temporal INR to represent the intra-scan dynamic motion of the reference CBCT to yield dynamic CBCTs. PMF-STINR couples the temporal INR with a learning-based B-spline motion model to capture time-varying deformable motion during the reconstruction. Compared with the previous methods, the spatial INR, the temporal INR, and the B-spline model of PMF-STINR are all learned on the fly during reconstruction in a one-shot fashion, without using any patient-specific prior knowledge or motion sorting/binning.Main results. PMF-STINR was evaluated via digital phantom simulations, physical phantom measurements, and a multi-institutional patient dataset featuring various imaging protocols (half-fan/full-fan, full sampling/sparse sampling, different energy and mAs settings, etc). The results showed that the one-shot learning-based PMF-STINR can accurately and robustly reconstruct dynamic CBCTs and capture highly irregular motion with high temporal (∼ 0.1 s) resolution and sub-millimeter accuracy.Significance. PMF-STINR can reconstruct dynamic CBCTs and solve the intra-scan motion from conventional 3D CBCT scans without using any prior anatomical/motion model or motion sorting/binning. It can be a promising tool for motion management by offering richer motion information than traditional 4D-CBCTs.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Machine Learning
18.
Polymers (Basel) ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794581

ABSTRACT

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.

19.
EMBO Mol Med ; 16(5): 1143-1161, 2024 May.
Article in English | MEDLINE | ID: mdl-38565806

ABSTRACT

Accurately predicting and selecting patients who can benefit from targeted or immunotherapy is crucial for precision therapy. Trophoblast cell surface antigen 2 (Trop2) has been extensively investigated as a pan-cancer biomarker expressed in various tumours and plays a crucial role in tumorigenesis through multiple signalling pathways. Our laboratory successfully developed two 68Ga-labelled nanobody tracers that can rapidly and specifically target Trop2. Of the two tracers, [68Ga]Ga-NOTA-T4, demonstrated excellent pharmacokinetics in preclinical mouse models and a beagle dog. Moreover, [68Ga]Ga-NOTA-T4 immuno-positron emission tomography (immunoPET) allowed noninvasive visualisation of Trop2 heterogeneous and differential expression in preclinical solid tumour models and ten patients with solid tumours. [68Ga]Ga-NOTA-T4 immunoPET could facilitate clinical decision-making through patient stratification and response monitoring during Trop2-targeted therapies.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Neoplasms , Positron-Emission Tomography , Animals , Dogs , Female , Mice , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/metabolism , Neoplasms/diagnostic imaging , Neoplasms/immunology , Positron-Emission Tomography/methods , Single-Domain Antibodies/immunology
20.
Neural Netw ; 175: 106272, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569460

ABSTRACT

The transformer-based model can simultaneously learn the representation for both images and text, providing excellent performance for multimodal applications. Practically, the large scale of parameters may hinder its deployment in resource-constrained devices, creating a need for model compression. To accomplish this goal, recent studies suggest using knowledge distillation to transfer knowledge from a larger trained teacher model to a small student model without any performance sacrifice. However, this only works with trained parameters of the student model by using the last layer of the teacher, which makes the student model easily overfit in the distillation procedure. Furthermore, the mutual interference between modalities causes more difficulties for distillation. To address these issues, the study proposed a layerwised multimodal knowledge distillation for a vision-language pretrained model. In addition to the last layer, the intermediate layers of the teacher were also used for knowledge transfer. To avoid interference between modalities, we split the multimodality into separate modalities and added them as extra inputs. Then, two auxiliary losses were implemented to encourage each modality to distill more effectively. Comparative experiments on four different multimodal tasks show that the proposed layerwised multimodality distillation achieves better performance than other KD methods for vision-language pretrained models.


Subject(s)
Neural Networks, Computer , Language , Knowledge , Humans
SELECTION OF CITATIONS
SEARCH DETAIL