Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 469
Filter
1.
Eur J Med Res ; 29(1): 400, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090755

ABSTRACT

Preterm delivery (PTD) is associated with severe adverse maternal and neonatal outcomes and higher medical costs. Therefore, PTD warrants more attention. However, predicting PTD remains a challenge for researchers. This study aimed to investigate potential prenatal predictors of PTD. We retrospectively recruited pregnant women who experienced either PTD or term delivery (TD) and underwent laboratory examinations at 32 weeks of gestation. We compared the test results between the two groups and performed logistic regression analysis and receiver operating characteristic (ROC) curve analysis to identify risk factors and predictive factors for PTD. Our investigation revealed that the PTD cohort exhibited statistically significant elevations in lymphocyte count, mean corpuscular hemoglobin concentration, calcium, uric acid, alkaline phosphatase, triglycerides, and total bile acids. Conversely, the PTD group demonstrated statistically significant reductions in mean corpuscular volume, homocysteine, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), neutrophils to (white blood cells-neutrophils) ratio (dNLR), and (neutrophils × monocytes) to lymphocyte ratio (SIRI). The ROC curve analysis revealed that calcium had an area under the curve (AUC) of 0.705, with a cut-off value of 2.215. Logistic regression analysis showed that premature rupture of membranes was an independent risk factor for PTD. Our study demonstrated that serum calcium levels, NLR, dNLR, and other laboratory tests conducted at 32 weeks of gestation can serve as predictors for PTD. Furthermore, we identified premature rupture of membranes as a risk factor for PTD.


Subject(s)
Calcium , Premature Birth , Humans , Female , Pregnancy , Retrospective Studies , Calcium/blood , Adult , Premature Birth/blood , Gestational Age , Risk Factors , ROC Curve , Biomarkers/blood
2.
Colloids Surf B Biointerfaces ; 242: 114111, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39053032

ABSTRACT

Cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) is a protein fragment released into the bloodstream during the death of lung epithelial cells, serving as a predictive biomarker in diagnosing non-small cell lung cancer (NSCLC) and need to be accurately detected. Herein, a dual-responsive label-free electrochemical immunosensor was developed based on a three-dimensional ordered interconnecting macroporous carbon skeleton material modified with gold-cobalt nanoparticles (Au/Co NPs-3D MCF) to detect cytokeratin-19 fragment (CYFRA21-1). The three-dimensional ordered interconnect macroporous structure, by providing a high specific surface area and an electrochemically active area, not only enhances the electron transport channel and reduces mass transfer resistance, but also offers a confined region that elevates the collision frequency with the active site. In addition to exhibiting excellent biocompatibility for antibody binding, gold-cobalt nanoparticles contribute significantly to the overall robustness of the immunosensor. By capitalizing on the 3D network structure and collective effect of Au and Co NPs, the Au/Co NPs-3D MCF immunosensors exhibit exceptional response signals in both chronocurrent testing and square-wave voltammetry, allowing for a wide linear response range of 0.0001-100 ng/mL and a low detection limit. Moreover, the constructed immunosensor is capable of detecting CYFRA21-1 in human serum and has the potential for further extension to detect multiple biomarkers. This work opens up new avenues for the construction of other highly selective 3D network immunosensors.

3.
Redox Biol ; 75: 103178, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986245

ABSTRACT

To this date, COVID-19 remains an unresolved pandemic, and the impairment of redox homeostasis dictates the severity of clinical outcomes. Here we examined initial UCLA cohort of 440 COVID-19 patients hospitalized between March 1st and April 1st, 2020, representing the first wave of the pandemic. The mean age was 58.88 ± 21.12, among which males were significantly more than females (55.5 % vs. 44.5 %), most distinctively in age group of 50-69. The age groups of 50-69 (33.6 %) and ≥70 (34.8 %) dominated. The racial composition was in general agreement with Census data with slight under-representation of Hispanics and Asians, and over-representation of Caucasians. Smoking was a significant factor (28.8 % vs. 11.0 % in LA population), likewise for obesity (BMI ≥30) (37.4 % vs. 27.7 % in LA population). Patients suffering from obesity or BMI<18.5 checked into ICU at a significantly higher rate. A 74.5 % of the patients had comorbidities including diabetes, chronic kidney disease, chronic pulmonary disease, congestive heart failure and peripheral vascular disease. The levels of d-dimer were drastically upregulated (1159.5 ng/mL), indicating hypercoagulative state. Upregulated LDH (328 IU/L) indicated significant tissue damages. A distorted redox hemeostasis is a common trait associated with these risk factors and clinical markers. A quarter of the patients received antivirals, among which Remdesivir most prescribed (23.6 %). Majority received antithrombotics (75 %), and antibiotics. Upon admission, 67 patients were intubated or received CPR; 177 patients eventually received intensive care (40.2 %). While 290 were discharged alive, 10 remained hospitalized, 73 were transferred, and 36 died with 3 palliatively discharged. In summary, our data fully characterized a Californian cohort of COVID-19 at the breaking phase of the pandemic, indicating that population demographics, biophysical characters, comorbidities and molecular pathological parameters have significant impacts on the evolvement of a pandemic. These provide critical insights into effective management of COVID-19, and future break from another pathogen.

4.
J Stomatol Oral Maxillofac Surg ; : 101970, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032645

ABSTRACT

OBJECTIVE: Head and Neck Squamous Cell Carcinoma (HNSCC) ranks as the sixth most prevalent form of cancer worldwide. MRE11 protein contains multiple domains that play a role in the initiation of DNA repair. This study aimed to elucidate the expression and prognostic significance of MRE11 in HNSCC. MATERIAL AND METHODS: The Cancer Genome Atlas (TCGA-HNSCC) dataset comprising 520 HNSCC tissues and 44 normal tissues was initially used to evaluate the association between MRE11 expression and clinicopathologic characteristics. Kaplan-Meier plot was utilized for survival analysis. MRE11-immune cell interaction was analyzed using Tumor Immune Estimation Resource (TIMER) database. Further, Insilco methods were used to explore the protein network and its association with other pathways. Quantitative reverse transcription PCR (RT-qPCR) was used to validate the MRE11 mRNA expression in oral squamous cell carcinoma (OSCC) tissues in patient samples. RESULTS: MRE11 expression was upregulated in HNSCC, and the expression significantly varied across different clinical stages, pathological grades, and initial treatment outcomes. Further, high MRE11 expression is associated with poorer survival outcomes. MRE11 overexpression is also linked to the activation of the HIPPO signaling pathway, the mTOR signaling pathway, and the MYC/MYCN signaling pathway. CONCLUSION: MRE 11 can be considered a novel prognostic biomarker for HNSCC, which can be leveraged for promising treatment outcomes. This research highlights MRE11 as a novel molecular biomarker for HNSCC and offers a new direction for its treatment, explicitly targeting MRE11 and its network for therapeutic intervention.

5.
Focus (Am Psychiatr Publ) ; 22(3): 388-399, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988470

ABSTRACT

Objective: The main purpose was to evaluate the efficacy and tolerability of different medications used to treat bulimia nervosa (BN). Methods: Randomized controlled trials (RCTs) were identified from published sources through searches in PubMed, Cochrane Library, Web of Science, and Embase from inception to November 2022. Primary outcomes were changes in the frequency of binge eating episodes and vomiting episodes from baseline to endpoint. Secondary outcomes were differences in the improvement of scores in depressive symptoms, tolerability (dropout due to adverse events) and weight change. Results: The literature search ultimately included 11 drugs, 33 studies and 6 types of drugs, 8 trials with TCAs (imipra-mine, desipramine), 14 with SSRIs (fluoxetine, citalopram and fluvoxamine), 6 with MAOIs (phenelzine, moclobemide and brofaromine), 3 with antiepileptic drugs (topiramate), 1 with mood stabilizers (lithium), and 1 with amphetamine-type appetite suppressant (fenfluramine). The reduction in binge eating episodes was more likely due to these drugs than the placebo, and the SMD was -0.4 (95% CI -0.61 ∼ -0.19); the changes in the frequency of vomiting episodes (SMD = -0.16, 95% CI -0.3 ∼ -0.03); weight (WMD = -3.05, 95% CI -5.97 ∼ -0.13); and depressive symptoms (SMD =-0.32, 95% CI -0.51 ∼ -0.13). However, no significant difference was found in dropout due to adverse events (RR = 1.66, 95% CI 1.14 ∼ 2.41). Conclusions: This meta-analysis indicates that most pharmacotherapies decreased the frequency of binge-eating and vomiting episodes, body weight, and depressive symptoms in BN patients, but the efficacy was not significant. In each drug the efficacy is different, treating different aspects, different symptoms to improve the clinical performance of bulimia nervosa.Appeared originally in BMC Pharmacol Toxicol 2023; 24:72.

6.
Bioelectrochemistry ; 160: 108778, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39003948

ABSTRACT

Three-dimensional (3D) network provide a promising platform for construction of high sensitive electrochemical immunosensor due to the benefits of high specific surface area and electron mobility. Herein, a sensitive label-free electrochemical immunosensor based on Au nanoparticles modified Ni-B nanosheets/graphene matrix was constructed to detect diethylstilbestrol (DES). The 3D network not only could increase the electron transport rate and surface area, but also could provide confinement area, which is conducive to increases the collision frequency with the active site. Moreover, Au NPs also have good biocompatibility, which is beneficial for ligating antibodies. Benefiting from the 3D network structure and Au collective effect, the electrochemical immunosensor possess sterling detection ability with wide linear response range (0.00038-150 ng/mL) and low detection limit (31.62 fg/mL). Moreover, the constructed immunosensor can also be extend to detect DES in Tap-water and river water. This work may provide a novel material model for the construction of high sensitive immunosensor.

7.
Environ Sci Pollut Res Int ; 31(32): 44952-44964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954340

ABSTRACT

Solanum lycopersicum L. can be classified into low Cd-accumulating and high Cd-accumulating types based on their accumulation characteristics of cadmium (Cd). There are many common S. lycopersicum varieties available in the market, but their specific Cd tolerance and enrichment abilities are not well understood. This article uses two S. lycopersicum cultivars, Yellow Cherry and Yellow Pearl, as experimental materials. The experimental method of soil pot planting was adopted, and Cd concentrations in the soil were added at 0, 0.6, 1.5, 2.5, 5, and 10 mg/kg. The changes in Cd content, biomass, photosynthetic pigment content, and photosynthetic parameters of the two S. lycopersicum cultivars were analyzed to screen for low-accumulation S. lycopersicum cultivars. The results showed that S. lycopersicum are Cd-sensitive plants. The Cd accumulation, photosynthetic parameters, and other basic indicators of Yellow Cherry basically showed significant differences when the soil Cd concentration was 0.6 mg/kg, and the biomass showed significant differences when the soil Cd concentration was 1.5 mg/kg. Except for the Cd accumulation in the roots and leaves of Yellow Pearl, which showed significant differences at a soil Cd concentration of 0.6 mg/kg, the other indicators basically showed significant differences when the soil Cd concentration was 1.5 mg/kg. When the soil Cd concentration was 0.6 mg/kg, the Cd accumulation in the fruit of Yellow Pearl was 0.04 mg/kg, making it a low-accumulation S. lycopersicum variety suitable for promoting cultivation in Cd-contaminated soil at 0.6 mg/kg. In conclusion, the Cd accumulation in the fruit of Yellow Pearl is significantly lower than that of Yellow Cherry and even below the Cd limit value for fresh vegetables specified in GB2762-2017. Therefore, Yellow Pearl can be grown as edible crops in soils with Cd concentrations ≤0.6 mg/kg. Furthermore, Yellow Cherry demonstrate strong Cd tolerance and can be used for the remediation of Cd-contaminated soils.


Subject(s)
Cadmium , Soil Pollutants , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Soil/chemistry , Biomass
8.
Foods ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998577

ABSTRACT

To improve product quality and obtain suitable processing parameters for crab apple slices (CASs) produced by continuous microwave drying (CMD), the effects of processing parameters, including slice thickness, microwave power, air velocity, and conveyor belt speed, on the evaluation indexes in terms of temperature, moisture content, color (L*, a*, b*), hardness, brittleness, and total phenolic content of CASs were investigated via the response surface method. The results indicated that microwave power has the greatest effect on the evaluation indexes applied to the CASs under CMD, followed by air velocity, slice thickness, and conveyor belt speed. To produce the desired product quality, the appropriate parameters for CMD of CASs were optimized as 1.25 mm slice thickness, 14,630 W microwave power, 0.50 m·s-1 air velocity, and 0.33 m·min-1 conveyor belt speed. Following that, the moisture content under CMD was found to be 13.53%, the desired color, hardness 0.79 g, brittleness 12.97 (number of peaks), and the total phenolic content 5.48 mg·g-1. This research provides a theoretical framework for optimizing the processing parameters of CASs using the response surface method.

9.
Fish Shellfish Immunol ; 151: 109741, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964436

ABSTRACT

Decay-accelerating factor (DAF) is an essential member of the complement regulatory protein family that plays an important role in immune response and host homeostasis in mammals. However, the immune function of DAF has not been well characterized in bony fish. In this study, a complement regulatory protein named CiDAF was firstly characterized from Ctenopharyngodon idella and its potential roles were investigated in intestine following bacterial infection. Similar to mammalian DAFs, CiDAF has multiple complement control protein (CCP) functional domains, suggesting the evolutionary conservation of DAFs. CiDAF was broadly expressed in all tested tissues, with a relatively high expression level detected in the spleen and kidney. In vivo immune challenge experiments revealed that CiDAF strongly responded to bacterial pathogens (Aeromonas hydrophila and Aeromonas veronii) and PAMPs (lipopolysaccharide (LPS) or muramyl dipeptide (MDP)) challenges. In vitro RNAi experiments indicated that knockdown of CiDAF could upregulate the expression of complement genes (C4b, C5 and C7) and inflammatory cytokines (TNF-α, IL-1ß and IL-8). Moreover, 2000 ng/mL of CiDAF agonist progesterone effectively alleviated LPS- or MDP-induced intestinal inflammation by regulating expression of complement factors, TLR/PepT1 pathway genes and inflammatory cytokines. Overall, these findings revealed that CiDAF may act as a negative regulator of intestinal complement pathway and immune response to bacterial challenge in grass carp.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Intestines , Animals , Carps/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Diseases/immunology , Immunity, Innate/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Intestines/immunology , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Aeromonas hydrophila/physiology , Amino Acid Sequence , Sequence Alignment/veterinary , Complement System Proteins/immunology
10.
Article in English | MEDLINE | ID: mdl-38955498

ABSTRACT

The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-ß signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.


Subject(s)
Granulosa Cells , Oocytes , Ovarian Follicle , Transcriptome , Animals , Female , Oocytes/metabolism , Oocytes/growth & development , Oocytes/cytology , Mice , Granulosa Cells/metabolism , Granulosa Cells/cytology , Transcriptome/genetics , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/cytology , Cell Communication/genetics , Signal Transduction/genetics , Gene Expression Profiling/methods , DNA Methylation/genetics , Oogenesis/genetics
11.
Sci Rep ; 14(1): 16426, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013931

ABSTRACT

The investigation into the impact of gravel on water infiltration process and hydraulic parameters in stony soil could offer a theoretical basis to enhance water availability in rocky mountain area. A one-dimensional vertical infiltration experiment was used in this study. Six groups of gravel content of 0% (CK), 10% (W1), 20% (W2), 30% (W3), 40% (W4) and 50% (W5) were established to explore the changes in the wetting front, cumulative infiltration volume and infiltration rate. Then the accuracy of four infiltration models in simulating soil water infiltration processes was evaluated. Finally, Hydrus-1D was used to perform numerical inversion of the soil water content after infiltration. The findings revealed that: (1) When the infiltration time reached 300 min, the wetting front of the W1, W2, W3, W4 and W5 treatments was 11.00%, 17.00%, 32.25%, 38.75% and 54.50% lower than CK, the cumulative infiltration volume was 29.80%, 38.97%, 45.62%, 54.74% and 73.17% lower than CK, and the stable infiltration rate was 50.98%, 52.94%, 66.67%, 68.63% and 86.27% lower than CK. (2) The soil-water infiltration processes were accurately described by the Horton model, the coefficient of determination (R2) > 0.935. (3) The simulation results of Hydrus-1D showed that with the increase of gravel content, the values of the retention water content (θr), saturated water content (θs), shape coefficient (n) and saturated hydraulic conductivity (Ks) were decreased, the values of the reciprocal of air-entry (α) were increased. The value of R2 was more than 0.894, the root mean square error (RMSE) and mean absolute error (MAE) were less than 2%, which demonstrated that the Hydrus-1D model exhibited superior capability in simulating the changes of water content in stony soil in rocky mountain area. The findings of this study demonstrated that gravel could decrease the water infiltration process and affect the water availability. It could provide data support for the water movement process of stony soil and rational utilization of limited water resources in mountainous area.

13.
Article in English | MEDLINE | ID: mdl-38970169

ABSTRACT

The coarctation of the aorta (CoA) combined with heart defects or cerebral artery aneurysms is more prevalent in clinical practice. However, cases of concurrent bilateral iliac artery dissection (IAD) are extremely rare and have not been reported. Here, we described a case with CoA combined with bilateral IAD. The patient, a 62-year-old male, presented with acute intermittent claudication accompanied by pain and aching in both lower limbs after walking. Following a thorough medical history inquiry and examination, the patient was diagnosed with acute bilateral IAD combined with CoA. The patient underwent endovascular treatment. Postoperatively, the aortic diameter recovered, and the bilateral IAD disappeared, yielding satisfactory therapeutic results. Conclusively, endovascular treatment of aortic coarctation combined with IAD is an effective therapeutic approach, enhancing patient survival and improving their quality of life.

14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 377-384, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970511

ABSTRACT

Secondary nephrosis is a series of chronic kidney diseases secondary to other underlying diseases, mainly manifesting as structural and functional abnormalities of the kidneys and metabolic disorders. It is one of the important causes of end-stage renal disease, with high morbidity and significant harm. Iron is an essential metal element in human cells, and ferroptosis is a non-traditional form of iron-dependent cell death, and its main mechanisms include iron accumulation, lipid metabolism disorders, abnormal amino acid metabolism, and damage to the antioxidant system. Recently studies have found that ferroptosis is involved in the occurrence and progression of secondary nephrosis, and the mechanism of ferroptosis in different secondary nephrosis vary. Therefore, an in-depth and systematic understanding of the association between ferroptosis and secondary nephrosis, as well as their specific regulatory mechanisms, can provide a theoretical basis for the diagnosis, prevention, treatment, and prognosis assessment of secondary nephrosis, laying the foundation for exploring new clinical therapeutic targets for secondary nephrosis.


Subject(s)
Ferroptosis , Iron , Nephrosis , Humans , Ferroptosis/physiology , Iron/metabolism , Nephrosis/metabolism , Animals , Kidney Failure, Chronic/complications , Lipid Metabolism
15.
J Immunother ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980111

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.

16.
Sci Rep ; 14(1): 17607, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080297

ABSTRACT

In this study, the removal effect of a new MOF-on MOF adsorbent based on Cu-Co bimetallic organic frameworks on tetracycline antibiotics (TCs) in water system was studied. The adsorbent (Cu-MOF@Co-MOF) were synthesized by solvothermal and self-assembly method at different concentrations of Co2+/Cu2+. The characterization results of SEM, XRD, XPS, FTIR and BET indicated that the MOF-on MOF structure of Cu-MOF@Co-MOF exhibited the best recombination and physicochemical properties when the molar ratio of Co2+: Cu2+ is 5:1. In addition, the Cu-MOF@Co-MOF have a high specific surface area and bimetallic clusters, which can achieve multi-target synergistic adsorption of TCs. Based on above advantages, Cu-MOF@Co-MOF provided a strong affinity and could efficiently adsorb more than 80% of pollutants in just 5 to 15 min using only 10 mg of the adsorbent. The adsorption capacity of tetracycline and doxycycline was 434.78 and 476.19 mg/g, respectively, showing satisfactory adsorption performance. The fitting results of the experimental data were more consistent with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process of TC and DOX occurred at the homogeneous adsorption site and was mainly controlled by chemisorption. Thermodynamic experiments showed that Cu-MOF@Co-MOF was thermodynamically advantageous for the removal of TCs, and the whole process was spontaneous. The excellent adsorption capacity and rapid adsorption kinetics indicate the prepared MOF-on MOF adsorbent can adsorb TCs economically and quickly, and have satisfactory application prospects for removing TCs in practical environments. The results of the study pave a new way for preparing novel MOFs-based water treatment materials with great potential for efficient removal.


Subject(s)
Anti-Bacterial Agents , Copper , Metal-Organic Frameworks , Tetracycline , Water Pollutants, Chemical , Water Purification , Adsorption , Copper/chemistry , Metal-Organic Frameworks/chemistry , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Tetracycline/chemistry , Tetracycline/isolation & purification , Water Purification/methods , Cobalt/chemistry , Kinetics
17.
Thromb Haemost ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38959956

ABSTRACT

BACKGROUND: Sepsis-induced coagulopathy (SIC) is a common cause of poor prognosis in critically ill patients in the intensive care unit (ICU). However, currently there are no tools specifically designed for predicting the occurrence of SIC in septic patients earlier. This study aimed to develop a predictive nomogram incorporating clinical markers and scoring systems to individually predict the probability of SIC in septic patients. METHODS: Patients consecutively recruited in the stage between January 2022 and April 2023 constituted the development cohort for retrospective analysis to internally test the nomogram, and patients in the stage between May 2023 to November 2023 constituted the validation cohort for prospective analysis to externally validate the nomogram. Univariate logistic regression analysis of the development cohort was performed firstly, and then multivariate logistic regression analysis was performed using backward stepwise method to determine the best-fitting model and obtain the nomogram from it. The nomogram was validated in an independent external validation cohort, involving discrimination and calibration. A decision curve analysis was also performed to evaluate the net benefit of the insertion decision with this nomogram. RESULTS: A total of 548 and 245 patients, 55.1 and 49.4% with SIC occurrence, were included in the development and validation cohorts, respectively. Predictors contained in the prediction nomogram included shock, platelets, and international normalized ratio (INR). Patients with shock (odds ratio [OR]: 4.499; 95% confidence interval [CI]: 2.730-7.414; p < 0.001), higher INR (OR: 349.384; 95% CI: 62.337-1958.221; p < 0.001), and lower platelet (OR: 0.985; 95% CI: 0.982-0.988; p < 0.001) had higher probabilities of SIC. The development model showed good discrimination, with an area under the receiver operating characteristic curve (AUROC) of 0.879 (95% CI: 0.850-0.908) and good calibration. Application of the nomogram in the validation cohort also gave good discrimination with an AUROC of 0.872 (95% CI: 0.826-0.917) and good calibration. The decision curve analysis of the nomogram provided better net benefit than the alternate options (intervention or no intervention). CONCLUSION: By incorporating shock, platelets, and INR in the model, this useful nomogram could be accessibly utilized to predict SIC occurrence in septic patients. However, external validation is still required for further generalizability improvement of this nomogram.

18.
Adv Sci (Weinh) ; : e2402610, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887865

ABSTRACT

Here, an approach to produce a hierarchical porous Fe-N-C@TABOH catalyst with densely accessible high intrinsic active FeNx sites is proposed. The method involves a single-step pyrolysis of Zn/Fe-zeolitic imidazolate framework (Zn/Fe-ZIF-H) with tetrabutylammonium hydroxide (TABOH) micelles, which is obtained by utilizing TABOH as a structural template and electronic mediator at room temperature for a brief duration of 16 min. Notably, the yield of Zn/Fe-ZIF-H is 3.5 times that of Zn/Fe-ZIF-N prepared by conventional method. Results indicate that in addition to expediting synthesis and increasing yield of the Zn/Fe-ZIF-H, the TABOH induces a hierarchical porous structure and fosters the formation of more and higher intrinsic active FeNx moieties in Fex-N-C@TABOH, showing that TABOH is a multifunctional template. Crucially, the increased mesoporosity/external surface area and optimized microenvironment of Fe-N-C@TABOH significantly enhance ORR activity by facilitating the formation of high intrinsic active FeNx sites, increasing accessible FeNx sites, and reducing mass transfer resistance. Through structure tailoring and microenvironment optimization, the resulting Fe-N-C@TABOH exhibits superior ORR performance. DFT calculation further validates that the synergistic effect of these two factors leads to low ORR barrier and optimized *OH adsorption energy. This study underscores the importance of structure and electronic engineering in the development of highly active ORR catalysts.

19.
ChemSusChem ; : e202400856, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894517

ABSTRACT

Chemical looping reforming of methane (CLRM) with Fe-based oxygen carriers is widely acknowledged as an environmentally friendly and cost-effective approach for syngas production, however, sintering-caused deactivate of oxygen carriers at elevated temperatures of above 900 °C is a longstanding issue restricting the development of CLRM. Here, in order to reduce the reaction temperature without compromising the chemical-looping CH4 conversion efficiency, we proposed a novel operation scheme of CLRM by manipulating the reaction pressure to shift the equilibrium of CH4 partial oxidation towards the forward direction based on the Le Chatelier's principle. The results from thermodynamic simulations showed that, at a fixed reaction temperature, the reduction in pressure led to the increase in CH4 conversion, H2 and CO selectivity, as well as carbon deposition rate of all investigated oxygen carriers. The pressure-negative CLRM with Fe3O4, Fe2O3 and MgFe2O4 could reduce the reaction temperature to below 700 ℃ on the premise of a satisfactory CLRM performance. In a comprehensive consideration of the CLRM performance, energy consumption, and CH4 requirement, NiFe2O4 was the Fe-based OCs best available for pressure-negative CLRM. This study offered a new strategy to address sintering-caused deactivation of materials in chemical looping from the reaction thermodynamics point of view.

20.
Front Plant Sci ; 15: 1362905, 2024.
Article in English | MEDLINE | ID: mdl-38855460

ABSTRACT

In the North China Plain, farmers are using excessive amounts of fertilizer for the production of high-yield crop yield, which indirectly causes pollution in agricultural production. To investigate an optimal rate of fertilizer application for summer maize, the fertilizer reduction experiments with 600 kg/ha NPK (N: P2O5: K2O = 28: 8: 10) as normal fertilizer application (NFA), (i.e., 100F), were conducted successively during 2020 and 2021 to study the effects of reduced fertilizer rates, including 90% (540 kg/ha; i.e., 90F), 80% (480 kg/ha; i.e., 80F), 62.5% (375 kg/ha; i.e., 62.5F) and 50% (300 kg/ha; i.e., 50F) of NFA, on the plant growth of maize, the dynamics of key population abundances and community diversity of insects, and the composition and diversity of microbial community and finally to find out the N-metabolic enzymes' activity in soil. Our findings revealed that the fertilizer reduction rates by 10% - 20% compared to the current 100% NFA, and it has not significantly affected the plant growth of maize, not only plant growth indexes but also foliar contents of nutrients, secondary metabolites, and N-metabolic enzymes' activity. Further, there was no significant alteration of the key population dynamics of the Asian corn borer (Ostrinia furnacalis) and the community diversity of insects on maize plants. It is interesting to note that the level of N-metabolic enzymes' activity and microbial community diversity in soil were also not affected. While the fertilizer reduction rate by 50% unequivocally reduced field corn yield compared to 100% NFA, significantly decreased the yield by 17.10%. The optimal fertilizer application was calculated as 547 kg/ha (i.e., 91.17% NFA) based on the simulation analysis of maize yields among the five fertilizer application treatments, and the fertilizer application reduced down to 486 kg/ha (i.e., 81.00% NFA) with a significant reduction of maize yield. These results indicated that reduced the fertilizer application by 8.83% - 19.00% is safe and feasible to mitigate pollution and promote sustainable production of maize crops in the region.

SELECTION OF CITATIONS
SEARCH DETAIL