Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.698
Filter
1.
Front Immunol ; 15: 1400177, 2024.
Article in English | MEDLINE | ID: mdl-38953027

ABSTRACT

Background: Chimeric antigen receptor T (CAR-T) cell therapies have achieved remarkable success in the treatment of hematological tumors. However, given the distinct features of solid tumors, particularly heterogeneity, metabolic aggressiveness, and fewer immune cells in tumor microenvironment (TME), the practical utility of CAR-T cells for solid tumors remains as a challenging issue. Meanwhile, although anti-PD-1 monoclonal antibody (mAb) has shown clinical efficacy, most mAbs also show limited clinical benefits for solid tumors due mainly to the issues associated with the lack of immune cells in TME. Thus, the infiltration of targeted immunological active cells into TME could generate synergistic efficacy for mAbs. Methods: We present a combinational strategy for solid tumor treatment, which combines armored-T cells to express Fc-gamma receptor I (FcγRI) fragment on the surfaces for targeting various tumors with therapeutically useful mAbs. Choosing CD20 and HER-2 as the targets, we characterized the in vitro and in vivo efficacy and latent mechanism of the combination drug by using flow cytometry, ELISA and other methods. Results: The combination and preprocessing of armored T-cells with corresponding antibody of Rituximab and Pertuzumab exerted profound anti-tumor effects, which is demonstrated to be mediated by synergistically produced antibody-dependent cellular cytotoxicity (ADCC) effects. Meanwhile, mAb was able to carry armored-T cell by preprocessing for the infiltration to TME in cell derived xenograft (CDX) model. Conclusions: This combination strategy showed a significant increase of safety profiles from the reduction of antibody doses. More importantly, the present strategy could be a versatile tool for a broad spectrum of cancer treatment, with a simple pairing of engineered T cells and a conventional antibody.


Subject(s)
Neoplasms , Receptors, IgG , T-Lymphocytes , Tumor Microenvironment , Receptors, IgG/immunology , Receptors, IgG/metabolism , Humans , Animals , Mice , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Immunotherapy, Adoptive/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Female , Antigens, CD20/immunology
2.
Article in English | MEDLINE | ID: mdl-38954246

ABSTRACT

PURPOSE OF REVIEW: Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS: The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.

3.
Int Immunopharmacol ; 138: 112605, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963979

ABSTRACT

Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.

4.
Pediatr Cardiol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965102

ABSTRACT

Children with heart disease are at increased risk of unstable dysrhythmias and in-hospital cardiac arrest (IHCA). Clinician adherence to lifesaving processes of care is an important contributor to improving patient outcomes. This study evaluated whether critical event checklists improve adherence to lifesaving processes during simulated acute events secondary to unstable dysrhythmias. A randomized controlled trial was conducted in a cardiac ward in a tertiary care, academic children's hospital. Unannounced simulated emergencies involving dysrhythmias in pediatric patients with underlying cardiac disease were conducted weekly. Responders were pediatric and anesthesiology residents, respiratory therapists, and bedside registered nurses. Six teams were randomized into two groups-three received checklists (intervention) and three did not (control). Each team participated in four simulated scenarios over a 4-week pediatric cardiology rotation. Participants received a brief slideshow presentation, which included a checklist orientation, at the start of their rotation. Simulations were video and audio recorded and those with three or more participants were included for analysis. The primary outcome was team adherence to lifesaving processes, expressed as the percentage of completed critical management steps. Secondary outcomes included participant perceptions of the checklist usefulness in identifying and managing dysrhythmias. We used generalized estimating equations (GEE) models, which accounted for clustering within groups, to evaluate the effects of the intervention. A total of 24 simulations were conducted; one of the 24 simulations was excluded due to an insufficient number of participants. In our GEE analysis, 81.21% (78.96%, 83.47%) of critical steps were completed with checklists available versus 68.06% (59.38%, 76.74%) without checklists (p = 0.004). Ninety-three percent of study participants reported that they would use the checklists during an unstable dysrhythmia of a child with underlying cardiac disease. Checklists were associated with improved adherence to lifesaving processes during simulated resuscitations for unstable pediatric dysrhythmias. These findings support the use of scenario specific checklists for the management of unstable dysrhythmias in simulations involving pediatric patients with underlying cardiac disease. Future studies should investigate whether checklists are as effective in actual pediatric in-hospital emergencies.

5.
Front Immunol ; 15: 1382417, 2024.
Article in English | MEDLINE | ID: mdl-38966640

ABSTRACT

Background: The Prognostic Nutritional Index (PNI) has become an important predictive tool for assessing patients' nutritional status and immune competence. It is widely used in prognostic evaluations for various cancer patients. However, the prognostic relevance of the Prognostic Nutritional Index (PNI) in gastric or gastro-esophageal junction cancer patients (GC/GEJC) undergoing immune checkpoint inhibitors (ICIs) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PNI in this specific patient cohort. Methods: We conducted a thorough literature search, covering prominent databases such as PubMed, Embase, Web of Science, SpringerLink, and the Cochrane Library. The search spanned from the inception of these databases up to December 5, 2023. Employing the 95% confidence interval and Hazard Ratio (HR), the study systematically evaluated the relationship between PNI and key prognostic indicators, including the objective remission rate (ORR), disease control rate (DCR), overall survival (OS) and progression-free survival (PFS) in GC/GEJC patients undergoing ICI treatment. Results: Eight studies comprising 813 eligible patients were selected. With 7 studies consistently demonstrating superior Overall Survival (OS) in the high-Prognostic Nutritional Index (PNI) group compared to their low-PNI counterparts (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Furthermore, the results derived from 6 studies pointed out that the significant correlation between he low-PNI and poorer progression-free survival (PFS) (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Subgroup analyses were performed to validate the robustness of the results. In addition, we conducted a meta-analysis of three studies examining the correlation between PNI and objective response rate/disease control rate (ORR/DCR) and found that the ORR/DCR was significantly superior in the high PNI group (ORR: RR: 1.24, P=0.002; DCR: RR: 1.43, P=0.008). Conclusion: This meta-analysis indicates that the low-PNI in GC/GEJC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PNI can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration: https://inplasy.com/, identifier INPLASY202450133.


Subject(s)
Esophageal Neoplasms , Esophagogastric Junction , Immune Checkpoint Inhibitors , Stomach Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Stomach Neoplasms/immunology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Prognosis , Nutrition Assessment , Nutritional Status
6.
Front Immunol ; 15: 1427348, 2024.
Article in English | MEDLINE | ID: mdl-38966635

ABSTRACT

Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.


Subject(s)
Immunotherapy , Melanoma , Single-Cell Analysis , Tumor Microenvironment , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Melanoma/therapy , Melanoma/genetics , Melanoma/immunology , Single-Cell Analysis/methods , Immunotherapy/methods , Sequence Analysis, RNA , Biomarkers, Tumor/genetics , Genetic Heterogeneity , Animals , Computational Biology/methods , Gene Expression Regulation, Neoplastic
7.
Microsyst Nanoeng ; 10: 92, 2024.
Article in English | MEDLINE | ID: mdl-38957168

ABSTRACT

Simultaneously achieving high sensitivity and detection speed with traditional solid-state biosensors is usually limited since the target molecules must passively diffuse to the sensor surface before they can be detected. Microfluidic techniques have been applied to shorten the diffusion time by continuously moving molecules through the biosensing regions. However, the binding efficiencies of the biomolecules are still limited by the inherent laminar flow inside microscale channels. In this study, focused traveling surface acoustic waves were directed into an acoustic microfluidic chip, which could continuously enrich the target molecules into a constriction zone for immediate detection of the immune reactions, thus significantly improving the detection sensitivity and speed. To demonstrate the enhancement of biosensing, we first developed an acoustic microfluidic chip integrated with a focused interdigital transducer; this transducer had the ability to capture more than 91% of passed microbeads. Subsequently, polystyrene microbeads were pre-captured with human IgG molecules at different concentrations and loaded for detection on the chip. As representative results, ~0.63, 2.62, 11.78, and 19.75 seconds were needed to accumulate significant numbers of microbeads pre-captured with human IgG molecules at concentrations of 100, 10, 1, and 0.1 ng/mL (~0.7 pM), respectively; this process was faster than the other methods at the hour level and more sensitive than the other methods at the nanomolar level. Our results indicated that the proposed method could significantly improve both the sensitivity and speed, revealing the importance of selective enrichment strategies for rapid biosensing of rare molecules.

8.
Article in English | MEDLINE | ID: mdl-38959707

ABSTRACT

Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.

9.
Curr Pharm Des ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963117

ABSTRACT

INTRODUCTION: Eucommia ulmoides is a unique monophyletic and tertiary relict in China and is listed as a national second-class precious protected tree species. Eucommia ulmoides, recognized as a traditional Chinese medicine, can tonify the liver and kidneys and strengthen bones and muscles. Modern pharmacological research has proved that Eucommia ulmoides has multiple osteoprotective effects, including prohibiting the occurrence of osteoporosis and arthritis and enhancing the healing of bone fractures and bone defects. AIM: To check its osteotropic effects, which may provide ideas for its potential use for the development of novel drugs to treat osteoporosis, this study evaluated the effect of total flavonoids from Eucommia ulmoides leaves (TFEL) on the acquisition of Peak Bone Mass (PBM) in young female rats. MATERIALS AND METHODS: TFEL was isolated, and its purity was confirmed by using a UV spectrophotometer. TFEL with a purity of 85.09% was administered to 6-week-old female rats by oral gavage at a low (50), mid (100), or high (200 mg/kg/d) dose, and the control group was administrated only with the same volume of water. After 13 weeks of treatment, the rats were sacrificed, and serum, different organs, and limb bones (femurs and tibias) were harvested, and the bone turnover markers, organ index, Bone Mineral Density (BMD), biomechanical property, and microstructure parameters were assayed. Furthermore, molecular targets were screened, and network pharmacology analyses were conducted to reveal the potential mechanisms of action of TFEL. RESULTS: Oral administration of TFEL for 13 weeks decreased the serum level of bone resorption marker TRACP-5b. As revealed by micro-computer tomography analysis, it elevated BMD even at a low dose (50 mg/kg/d) and improved the microstructural parameters, which were also confirmed by H&E histological staining. However, TFEL showed no effects on body weights, organ index, and micromorphology in the uterus. In our network pharmacology study, an intersection analysis screened out 64 shared targets, with quercetin, kaempferol, naringenin, and apigenin regulating the greatest number of targets associated with osteoporosis. Flavonoids in Eucommia ulmoides inhibited the occurrence of osteoporosis potentially through targeting signaling pathways for calcium, VEGF, IL-17, and NF-κB. Furthermore, AKT1, EGFR, PTGS2, VEGFA, and CALM were found to be potentially important target genes for the osteoprotective effects of flavonoids in Eucommia ulmoides. CONCLUSION: The above results suggested that TFEL can be used to elevate the peak bone mass in adolescence in female individuals, which may prevent the occurrence of postmenopausal osteoporosis, and the good safety of TFEL also suggests that it can be used as a food additive for daily life to improve the bone health.

10.
FASEB J ; 38(13): e23791, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963340

ABSTRACT

Inflammatory bowel disease (IBD) is a kind of recurrent inflammatory disorder of the intestinal tract. The purpose of this study was to investigate the effects of Weissella paramesenteroides NRIC1542 on colitis in mice. A colitis model was induced by adding 1.5% DSS to sterile distilled water for seven consecutive days. During this process, mice were administered different concentrations of W. paramesenteroides NRIC1542. Colitis was assessed by DAI, colon length and hematoxylin-eosin staining of colon sections. The expressions of NF-κB signaling proteins and the tight junction proteins ZO-1 and occludin were detected by western blotting, and the gut microbiota was analyzed by 16S rDNA. The results showed that W. paramesenteroides NRIC1542 significantly reduced the degree of pathological tissue damage and the levels of TNF-α and IL-1ß in colonic tissue, inhibiting the NF-κB signaling pathway and increasing the expression of SIRT1, ZO-1 and occludin. In addition, W. paramesenteroides NRIC1542 can modulate the structure of the gut microbiota, characterized by increased relative abundance of Muribaculaceae_unclassified, Paraprevotella, Prevotellaceae_UCG_001 and Roseburia, and decrease the relative abundance of Akkermansia and Alloprevotella induced by DSS. The above results suggested that W. paramesenteroides NRIC1542 can protect against DSS-induced colitis in mice through anti-inflammatory, intestinal barrier maintenance and flora modulation.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Sirtuin 1 , Weissella , Animals , Gastrointestinal Microbiome/drug effects , Sirtuin 1/metabolism , Mice , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Dextran Sulfate/toxicity , Signal Transduction/drug effects , NF-kappa B/metabolism , Weissella/metabolism , Male , Probiotics/pharmacology
11.
Adv Sci (Weinh) ; : e2404266, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986026

ABSTRACT

Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.

12.
Genes Dis ; 11(5): 101148, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38993793

ABSTRACT

As a pathological hallmark of type 2 diabetes mellitus (T2DM), islet amyloid is formed by the aggregation of islet amyloid polypeptide (IAPP). Endoplasmic reticulum (ER) stress interacts with IAPP aggregates and has been implicated in the pathogenesis of T2DM. To examine the role of ER stress in T2DM, we cloned the hIAPP promoter and analyzed its promoter activity in human ß-cells. We found that ER stress significantly enhanced hIAPP promoter activity and expression in human ß-cells via triggering X-box binding protein 1 (XBP1) splicing. We identified a binding site of XBP1 in the hIAPP promoter. Disruption of this binding site by substitution or deletion mutagenesis significantly diminished the effects of ER stress on hIAPP promoter activity. Blockade of XBP splicing by MKC3946 treatment inhibited ER stress-induced hIAPP up-regulation and improved human ß-cell survival and function. Our study uncovers a link between ER stress and IAPP at the transcriptional level and may provide novel insights into the role of ER stress in IAPP cytotoxicity and the pathogenesis of T2DM.

13.
World J Clin Cases ; 12(19): 3961-3970, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994316

ABSTRACT

BACKGROUND: Juvenile hemochromatosis (JH) is an early-onset, rare autosomal recessive disorder of iron overload observed worldwide that leads to damage in multiple organs. Pathogenic mutations in the hemojuvelin (HJV) gene are the major cause of JH. CASE SUMMARY: A 34-year-old male Chinese patient presented with liver fibrosis, diabetes, hypogonadotropic hypogonadism, hypophysis hypothyroidism, and skin hyperpigmentation. Biochemical test revealed a markedly elevated serum ferritin level of 4329 µg/L and a transferrin saturation rate of 95.4%. Targeted exome sequencing and Sanger sequencing revealed that the proband had a novel mutation c.863G>A (p.R288Q) in the HJV gene which was transmitted from his father, and two known mutations, c.18G>C (p.Q6H) and c.962_963delGCinsAA (p.C321*) in cis, which were inherited from his mother. The p.R288W mutation was previously reported to be pathogenic for hemochromatosis, which strongly supported the pathogenicity of p.R288Q reported for the first time in this case. After 72 wk of intensive phlebotomy therapy, the patient achieved a reduction in serum ferritin to 160.5 µg/L. The patient's clinical symptoms demonstrated a notable improvement. CONCLUSION: This study highlights the importance of screening for hemochromatosis in patients with diabetes and hypogonadotropic hypogonadism. It also suggests that long-term active phlebotomy could efficiently improve the prognosis in severe JH.

14.
Protein Sci ; 33(8): e5098, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980003

ABSTRACT

Homocysteine thiolactone (HTL), a toxic metabolite of homocysteine (Hcy) in hyperhomocysteinemia (HHcy), is known to modify protein structure and function, leading to protein damage through formation of N-Hcy-protein. HTL has been highly linked to HHcy-associated cardiovascular and neurodegenerative diseases. The protective role of HTL hydrolases against HTL-associated vascular toxicity and neurotoxicity have been reported. Although several endogeneous enzymes capable of hydrolyzing HTL have been identified, the primary enzyme responsible for its metabolism remains unclear. In this study, three human carboxylesterases were screened to explore new HTL hydrolase and human carboxylesterase 1 (hCES1) demonstrates the highest catalytic activity against HTL. Given the abundance of hCES1 in the liver and the clinical significance of its single-nucleotide polymorphisms (SNPs), six common hCES1 nonsynonymous coding SNP (nsSNPs) variants were examined and characterized for their kinetic parameters. Variants E220G and G143E displayed 7.3-fold and 13.2-fold lower catalytic activities than its wild-type counterpart. In addition, the detailed catalytic mechanism of hCES1 for HTL hydrolysis was computational investigated and elucidated by Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) method. The function of residues E220 and G143 in sustaining its hydrolytic activity of hCES1 was analyzed, and the calculated energy difference aligns well with experimental-derived results, supporting the validity of our computational insights. These findings provide insights into the potential protective role of hCES1 against HTL-associated toxicity, and warrant future studies on the possible association between specific genetic variants of hCES1 with impaired catalytic function and clinical susceptibility of HTL-associated cardiovascular and neurodegenerative diseases.


Subject(s)
Homocysteine , Polymorphism, Single Nucleotide , Humans , Homocysteine/metabolism , Homocysteine/chemistry , Homocysteine/analogs & derivatives , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Kinetics
15.
Infect Dis Poverty ; 13(1): 54, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982550

ABSTRACT

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province. METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters. RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified. CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.


Subject(s)
Genetic Variation , Phylogeny , Rickettsiales , Ticks , China/epidemiology , Animals , Prevalence , Rickettsiales/genetics , Rickettsiales/isolation & purification , Rickettsiales/classification , Ticks/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Livestock/microbiology , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Mammals/microbiology , Humans
16.
Heliyon ; 10(12): e33187, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021937

ABSTRACT

Quantifying and interpreting the water-energy-food (WEF) nexus is critical to achieve the sustainable development of urban resources. The mismatch between urban water, energy and food allocations is a prominent problem that is particularly acute in the Yellow River Basin (YRB) of China. In this study, models for the WEF coupling degree and coupling efficiency were constructed. The WEF coupling efficiencies of the 94 cities in the YRB from 2011 to 2020 were quantified using a data envelopment analysis (DEA) model. On this basis, the spatial distribution characteristics and evolutionary trends of different urban WEF coupling efficiencies were analysed and explored using an exploratory spatial data analysis (ESDA) model and a parametric kernel density estimation model. The results show that the energy subsystem constrain the development of the WEF nexus, and the food subsystem, in turn, regulates the development of the WEF nexus. In some years, the phenomenon of 'resource curse' occurred, in which the WEF coupling degree increased while the coupling efficiency decreased. Overall, the values of the urban WEF coupling efficiency were low, ranging from 0.5300 to 0.6300, which is not effective. Spatial clustering was detected in the urban WEF coupling efficiency. The clustering types were 'high-high' clustering areas in less developed regions and 'low-low' clustering areas in developed regions. The two clusters and the median contiguous group had different evolutionary trends. Both efficiency and polarisation increased in the high-clustering group, efficiency improved in the low-clustering group, and a new efficiency pole was formed in the median contiguous group. Among the three grouped cities, we discuss the potential of policies such as cross-city cooperation, intra-city multi-sectoral cooperation and cultivating new central growth cities to improve the WEF coupling efficiency in the YRB.

17.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39027997

ABSTRACT

The dental follicle (DF) plays an indispensable role in tooth eruption by regulating bone remodeling through their influence on osteoblast and osteoclast activity. The process of tooth eruption involves a series of intricate regulatory mechanisms and signaling pathways. Disruption of the parathyroid hormone­related protein (PTHrP) in the PTHrP­PTHrP receptor signaling pathway inhibits osteoclast differentiation by DF cells (DFCs), thus resulting in obstructed tooth eruption. Furthermore, parathyroid hormone receptor­1 mutations are linked to primary tooth eruption failure. Additionally, the Wnt/ß­catenin, TGF­ß, bone morphogenetic protein and Hedgehog signaling pathways have crucial roles in DFC involvement in tooth eruption. DFC signal loss or alteration inhibits osteoclast differentiation, affects osteoblast and cementoblast differentiation, and suppresses DFC proliferation, thus resulting in failed tooth eruptions. Abnormal tooth eruption is also associated with a range of systemic syndromes and genetic diseases, predominantly resulting from pathogenic gene mutations. Among these conditions, the following disorders arise due to genetic mutations that disrupt DFCs and impede proper tooth eruption: Cleidocranial dysplasia associated with Runt­related gene 2 gene mutations; osteosclerosis caused by CLCN7 gene mutations; mucopolysaccharidosis type VI resulting from arylsulfatase B gene mutations; enamel renal syndrome due to FAM20A gene mutations; and dentin dysplasia caused by mutations in the VPS4B gene. In addition, regional odontodysplasia and multiple calcific hyperplastic DFs are involved in tooth eruption failure; however, they are not related to gene mutations. The specific mechanism for this effect requires further investigation. To the best of our knowledge, previous reviews have not comprehensively summarized the syndromes associated with DF abnormalities manifesting as abnormal tooth eruption. Therefore, the present review aims to consolidate the current knowledge on DFC signaling pathways implicated in abnormal tooth eruption, and their association with disorders of tooth eruption in genetic diseases and syndromes, thereby providing a valuable reference for future related research.


Subject(s)
Dental Sac , Tooth Eruption , Humans , Dental Sac/metabolism , Mutation , Signal Transduction , Animals , Osteoclasts/metabolism , Osteoclasts/pathology , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Cell Differentiation , Parathyroid Hormone-Related Protein/metabolism , Parathyroid Hormone-Related Protein/genetics
19.
J Med Virol ; 96(7): e29817, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034740

ABSTRACT

A highly sensitive and reliable Hepatitis B virus surface antigen (HBsAg) measurement is essential to universal screening, timely diagnosis, and management of Hepatitis B virus (HBV) infection. This study aimed to evaluate the performance of MAGLUMI HBsAg chemiluminescence immunoassay (CLIA). MAGLUMI HBsAg (CLIA) was compared against ARCHITECT HBsAg. 411 HBsAg positive samples, including different stages of infection, genotypes, subtypes, mutants, and 30 seroconversion panels were tested to evaluate diagnostic sensitivity. Diagnostic specificity was evaluated by testing 205 hospitalized samples and 5101 blood donor samples. Precision, limit of blank (LoB), limit of detection (LoD), and linearity were also verified. The diagnostic sensitivity of the MAGLUMI HBsAg (CLIA) was 100% with better seroconversion sensitivity than ARCHITECT HBsAg. The MAGLUMI HBsAg (CLIA) has optimal detection efficacy for HBV subgenotypes samples. The analytical sensitivity is 0.039 IU/mL. The initial diagnostic specificity is 99.63% on blood donors and 96.59% on hospitalized samples. The verification data demonstrated high repeatability, a LoB of 0.02 IU/mL, LoD of 0.05 IU/mL and an excellent linearity of 0.050-250 IU/mL (R2 = 0.9946). The MAGLUMI HBsAg (CLIA) is proved a highly sensitive and reliable assay with optimal subgenotype detection efficacy.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B , Luminescent Measurements , Sensitivity and Specificity , Humans , Hepatitis B Surface Antigens/blood , Hepatitis B Surface Antigens/immunology , Hepatitis B/diagnosis , Hepatitis B/blood , Luminescent Measurements/methods , Immunoassay/methods , Immunoassay/standards , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Genotype , Adult , Female , Male , Middle Aged , Young Adult , Reproducibility of Results , Aged , Adolescent
20.
Genes Chromosomes Cancer ; 63(7): e23258, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011998

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths globally. Gene fusion, a key driver of tumorigenesis, has led to the identification of numerous driver gene fusions for lung cancer diagnosis and treatment. However, previous studies focused on Western populations, leaving the possibility of unrecognized lung cancer-associated gene fusions specific to Inner Mongolia due to its unique genetic background and dietary habits. To address this, we conducted DNA sequencing analysis on tumor and adjacent nontumor tissues from 1200 individuals with lung cancer in Inner Mongolia. Our analysis established a comprehensive fusion gene landscape specific to lung cancer in Inner Mongolia, shedding light on potential region-specific molecular mechanisms underlying the disease. Compared to Western cohorts, we observed a higher occurrence of ALK and RET fusions in Inner Mongolian patients. Additionally, we discovered eight novel fusion genes in three patients: SLC34A2-EPHB1, CCT6P3-GSTP1, BARHL2-APC, HRAS-MELK, FAM134B-ERBB2, ABCB1-GIPC1, GPR98-ALK, and FAM134B-SALL1. These previously unreported fusion genes suggest potential regional specificity. Furthermore, we characterized the fusion genes' structures based on breakpoints and described their impact on major functional gene domains. Importantly, the identified novel fusion genes exhibited significant clinical and pathological relevance. Notably, patients with SLC34A2-EPHB1, CCT6P3-GSTP1, and BARHL2-APC fusions showed sensitivity to the combination of chemotherapy and immunotherapy. Patients with HRAS-MELK, FAM134B-ERBB2, and ABCB1-GIPC1 fusions showed sensitivity to chemotherapy. In summary, our study provides novel insights into the frequency, distribution, and characteristics of specific fusion genes, offering valuable guidance for the development of effective clinical treatments, particularly in Inner Mongolia.


Subject(s)
Lung Neoplasms , Oncogene Proteins, Fusion , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Female , China , Oncogene Proteins, Fusion/genetics , Middle Aged , Aged , Adult
SELECTION OF CITATIONS
SEARCH DETAIL