Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.987
1.
J Craniofac Surg ; 35(4): 1201-1204, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38829146

OBJECTIVE: This study aimed to investigate the feasibility, safety, and efficacy of the neuroendoscopy-assisted entire-process visualization technique (NEAEVT) of ventricular puncture for external ventricular drainage. METHODS: Eighty-eight patients with cerebral hemorrhage who underwent unilateral ventricular puncture for external ventricular drainage in our hospital from June 2021 to June 2023 were analyzed. Patients were grouped according to puncture technique: NEAEVT (30 patients), freehand (30 patients), and laser-navigation-assisted (28 patients). Operation time, drainage tube placement, and catheter-related hemorrhage incidence were compared between the groups. RESULTS: Mean operation time significantly differed between the freehand, NEAEVT, and laser-assisted groups (17.07, 18.37, and 34.04 min, respectively; P <0.0001). The position of the drainage tube was optimal or adequate in all patients of the NEAEVT group; optimal/adequate positioning was achieved in 80% of the freehand group. No catheter-related hemorrhage occurred in the NEAEVT group. Three freehand group patients and 2 laser-assisted group patients experienced catheter-related hemorrhage. CONCLUSION: The NEAEVT of ventricular puncture is accurate and achieves ventricular drainage without significantly increasing surgical trauma, operation time, or incidence of hemorrhage.


Cerebral Ventricles , Drainage , Neuroendoscopy , Operative Time , Punctures , Humans , Male , Female , Drainage/methods , Middle Aged , Neuroendoscopy/methods , Aged , Cerebral Ventricles/surgery , Cerebral Ventricles/diagnostic imaging , Adult , Cerebral Hemorrhage/surgery , Feasibility Studies , Ventriculostomy/methods , Retrospective Studies , Treatment Outcome
3.
Angew Chem Int Ed Engl ; : e202407186, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837631

Although natural sunlight is one of the most abundant and sustainable energy resources, only a fraction of its energy is currently harnessed and utilized in photoactive systems. The development of molecular photoswitches that can be directly activated by sunlight is imperative for unlocking the full potential of solar energy and addressing the growing energy demands. Herein, we designed a series of 2-amino-1,3-bis-azopyrazoles that features a coupled πn system, resulting in a pronounced redshift in its spectral absorption, reaching up to 661 nm in the red region. By varying the amino substituents of these molecules, highly efficient E→Z photoisomerization under unfiltered sunlight can be achieved, with yields of up to 88.4%. Moreover, the Z,Z-isomers have high thermal stability with half-lives from days to years at room temperature. The introduction of ortho-amino substitutions and meta-bisazo units leads to a reversal of the n-π* and πn-π* transitions on the energy scale. This change provides a new perspective for further tuning the visible absorption of azo-switches by utilizing the πn-π* band instead of the conventional n-π* band. These results suggest that photoresponsive systems can be powered by sunlight instead of traditional artificial lights, thereby paving the way for sustainable smart materials and devices.

5.
Cell Rep Med ; : 101592, 2024 May 29.
Article En | MEDLINE | ID: mdl-38843841

Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.

6.
Sci Adv ; 10(23): eado2329, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838139

High-performance organic devices with dynamic and stable modulation are essential for building devices adaptable to the environment. However, the existing reported devices incorporating light-activated units exhibit either limited device stability or subpar optoelectronic properties. Here, we synthesize a new optically tunable polymer dielectric functionalized with photochromic arylazopyrazole units with a cis-isomer half-life of as long as 90 days. On this basis, stable dual-mode organic transistors that can be reversibly modulated are successfully fabricated. The trans-state devices exhibit high carrier mobility reaching 7.4 square centimeters per volt per second and excellent optical figures of merit, whereas the cis-state devices demonstrate stable but starkly different optoelectronic performance. Furthermore, optical image sensors are prepared with regulatable nonvolatile memories from 36 hours (cis state) to 108 hours (trans state). The achievement of dynamic light modulation shows remarkable prospects for the intelligent application of organic optoelectronic devices.

7.
PeerJ ; 12: e17459, 2024.
Article En | MEDLINE | ID: mdl-38827311

Background: Engaging in appropriate physical activity can significantly lower the risk of various diseases among middle-aged and older adults. Investigating optimal levels of physical activity (PA) is crucial for enhancing the health of this demographic. This study aims to explore the dose-response relationship between weekly PA levels and the frequency of colds among Chinese middle-aged and elderly individuals, identifying the necessary PA level to effectively diminish the risk of colds. Methods: We conducted a cross-sectional study using a web-based survey targeting individuals aged 40 and older (n = 1, 683) in China. The survey collected information on PA and the frequency of colds. Data was analyzed using Kruskal-Wallis test and the χ2 test. We explored the dose-response relationship between weekly PA and cold frequency over the past year through an ordered multivariate logistic regression model and a restricted cubic spline model. Results: (1) Brisk walking emerged as the preferred physical exercise for those over 40. The findings suggest that engaging in moderate (odds ratio (OR) = 0.64, P < 0.001, 95% confidence interval (CI) [0.50-0.81]) and high (OR = 0.64, P < 0.001, 95% CI [0.51-0.79]) levels of PA weekly significantly reduces the risk of catching a cold. Individuals with one (OR = 1.47, P < 0.001, 95% CI [1.20-1.80]) or multiple chronic diseases (OR = 1.56, P < 0.001, 95% CI [1.21-2.00]) were at increased risk. Those residing in central (OR = 1.64, P < 0.001, 95% CI [1.33-02.01]) and western China (OR = 1.49, P = 0.008, 95% CI [1.11-02.00]) faced a higher risk compared to their counterparts in eastern China. (2) According to the restricted cubic spline model, adults who experienced one cold in the past year had a weekly PA level of 537.29 metabolic equivalent-minutes per week (MET-min/wk) with an OR value of 1. For those reporting two or more colds, the PA level was 537.76 MET-min/wk with an OR of 1. Conclusions: (1) Brisk walking is the most favored exercise among the Chinese middle-aged and elderly, with the prevalence of colds being affected by the number of chronic diseases and the geographic location. (2) Regular, moderate exercise is linked to a lower risk of colds. To effectively reduce cold frequency, it is recommended that middle-aged and elderly Chinese individuals engage in a minimum of 538 MET-min/wk of exercise.


Exercise , Humans , Male , Cross-Sectional Studies , Female , Middle Aged , China/epidemiology , Aged , Exercise/physiology , Adult , Walking/statistics & numerical data , Common Cold/epidemiology , Common Cold/prevention & control , East Asian People
8.
Small ; : e2401831, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733226

Quasi-2D perovskites have attracted much attention in perovskite photovoltaics due to their excellent stability. However, their photoelectric conversion efficiency (PCE) still lags 3D counterparts, particularly with high short-circuit current (JSC) loss. The quantum confinement effect is pointed out to be the sole reason, which introduces widened bandgap and poor exciton dissociation, and undermines the light capture and charge transport. Here, the gradient incorporation of formamidinium (FA) cations into quasi-2D perovskite is proposed to address this issue. It is observed that FA prefers to incorporate into the larger n value phases near the film surface compared to the smaller n value phases in the bulk, resulting in a narrow bandgap and gradient structure within the film. Through charge dynamic analysis using in situ light-dark Kelvin probe force microscopy and transient absorption spectroscopy, it is demonstrated that incorporating 10% FA significantly facilitates efficient charge transfer between low n-value phases in the bulk and high n-value nearby film surface, leading to reduced charge accumulation. Ultimately, the device based on (AA)2(MA0.9FA0.1)4Pb5I16, where AA represents n-amylamine renowned for its exceptional environmental stability as a bulky organic ligand, achieves an impressive power conversion efficiency (PCE) of 18.58% and demonstrates enhanced illumination and thermal stability.

9.
Article En | MEDLINE | ID: mdl-38695865

A novel Gram-staining-positive actinobacterium with antimicrobial activity, designated CFH 90308T, was isolated from the sediment of a salt lake in Yuncheng, Shanxi, south-western China. The isolate exhibited the highest 16S rRNA gene sequence similarities to Microbacterium yannicii G72T, Microbacterium hominis NBRC 15708T and Microbacterium xylanilyticum S3-ET (98.5, 98.4 and 98.2 %, respectively), and formed a separate clade with M. xylanilyticum S3-ET in phylogenetic trees. The strain grew at 15-40 ºC, pH 6.0-8.0 and could tolerate NaCl up to a concentration of 15 % (w/v). The whole genome of strain CFH 90308T consisted of 4.33 Mbp and the DNA G+C content was 69.6 mol%. The acyl type of the peptidoglycan was glycolyl and the whole-cell sugars were galactose and mannose. The cell-wall peptidoglycan mainly contained alanine, glycine and lysine. The menaquinones of strain CFH 90308T were MK-12, MK-13 and MK-11. Strain CFH 90308T contained anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C15:0 as the predominant fatty acids. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between CFH 90308T and the other species of the genus Microbacterium were found to be low (ANIb <81.3 %, dDDH <25.6 %). The secondary metabolite produced by strain CFH 90308T showed antibacterial activities against Bacillus subtilis, Pseudomonas syringae, Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus. Based on genotypic, phenotypic and chemotaxonomic results, the isolate is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium salsuginis sp. nov. is proposed. The type strain is CFH 90308T (=DSM 105964T=KCTC 49052T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Vitamin K 2/analogs & derivatives , Geologic Sediments/microbiology , Peptidoglycan , Lakes/microbiology , Nucleic Acid Hybridization , Sodium Chloride/metabolism , Genome, Bacterial
10.
Sci Rep ; 14(1): 10776, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734750

The age, creatinine, and ejection fraction (ACEF) score has been accepted as a predictor of poor outcome in elective operations. This study aimed to investigate the predictive value of ACEF score in acute type A aortic dissection (AAAD) patients after total arch replacement. A total of 227 AAAD patients from July 2021 and June 2022 were enrolled and divided into Tertiles 1 (ACEF ≤ 0.73), Tertiles 2 (0.73 < ACEF ≤ 0.95), and Tertiles 3 (ACEF > 0.95). Using inverse probability processing weighting (IPTW) to balance the baseline characteristics and compare the outcomes. Cox logistic regression was used to further evaluate the survival prediction ability of ACEF score. The in-hospital mortality was 9.8%. After IPTW, in the baseline characteristics reached an equilibrium, a higher ACEF score before operation still associated with higher in-hospital mortality. After 1 year follow-up, 184 patients (90.6%) survival. Multivariable analysis revealed that ACEF score (adjusted hazard ratio 1.68; 95% confidence interval 1.34-4.91; p = 0.036) and binary ACEF score (adjusted HR 2.26; 95% CI 1.82-6.20; p < 0.001) was independently associated with 1-year survival. In addition, net reclassification improvement (NRI) and integrated differentiation improvement (IDI) verified that the ACEF score and binary ACEF score is an accurate predictive tool in clinical settings. In conclusions, ACEF score could be considered as a useful tool to risk stratification in patients with AAAD before operation in daily clinical work.


Aortic Dissection , Creatinine , Hospital Mortality , Humans , Female , Male , Aortic Dissection/surgery , Aortic Dissection/mortality , Middle Aged , Creatinine/blood , Aged , Stroke Volume , Age Factors , Prognosis , Predictive Value of Tests , Aorta, Thoracic/surgery , Retrospective Studies , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/mortality
11.
Angew Chem Int Ed Engl ; : e202407298, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777794

Crystalline porous framework materials have attracted tremendous interest in electrocatalytic CO2 reduction owing to their ordered structures and high specific surface areas as well as rich designability, however, still suffer from a lack of accuracy in regulating the binding strength between the catalytic sites and intermediates, which is crucial for optimizing the electrocatalytic activity and expanding the product types. Herein, we report three new kinds of vinylene-linked metal-covalent organic frameworks (TMT-CH3-MCOF, TMP-CH3-MCOF and TMP-MCOF) with continuously tunable D-π-A interactions by adjusting the structure of the monomers at the molecular level for realizing efficient electroreduction of CO2 to formate for the first time. Interestingly, compared with TMT-CH3-MCOF and TMP-MCOF, the TMP-CH3-MCOF exhibited the highest HCOO- Faradaic efficiency (FEHCOO-) of 95.6% at -1.0 V vs RHE and displayed the FEHCOO- above 90% at the voltage range of -1.0 to -1.2 V vs. RHE, which is one of the highest among various kinds of reported electrocatalysts. Theoretical calculations further reveal that the catalytic sites in TMP-CH3-MCOF with unique moderate D-π-A interactions have suitable binding ability towards the reaction intermediate, which is beneficial for the formation of *HCOO and desorption of *HCOOH, thus effectively promoting the electroreduction of CO2 to formate.

12.
Diabetol Metab Syndr ; 16(1): 111, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783372

BACKGROUND: Metabolic syndrome (MetS) has been related to the increased incidence of esophageal cancer (EC). The aim of the study was to evaluate the influence of MetS on prognosis of patients with surgically treated EC in a systematic review and meta-analysis. METHODS: An extensive search was conducted on PubMed, Embase, Web of Science, Wanfang, and CNKI to identify relevant cohort studies. Random-effects models were employed to combine the findings, taking into account the potential influence of heterogeneity. RESULTS: Seven cohort studies involving 4332 patients with stage I-III EC who received surgical resection were included. At baseline, 608 (14.0%) patients had MetS. Pooled results suggested that MetS were associated with a higher risk of postoperative complications (risk ratio [RR]: 1.30, 95% confidence interval [CI]: 1.03 to 1.64, p = 0.03; I2 = 0%). However, the overall survival (RR: 1.07, 95% CI: 0.75 to 1.52, p = 0.71; I2 = 80%) and progression-free survival (RR: 1.27, 95% CI: 0.53 to 3.00, p = 0.59; I2 = 80%) were not significantly different between patients with and without MetS. Subgroup analyses suggested that the results were not significantly modified by study design (prospective or retrospective), histological type of EC (squamous cell carcinoma or adenocarcinoma), or diagnostic criteria for MetS (p values indicating subgroup difference all > 0.05). CONCLUSION: Although MetS may be associated with a moderately increased risk of postoperative complications in patients with EC under surgical resection, the long-term survival may not be different between patients with and without MetS.

13.
Am J Chin Med ; 52(3): 753-773, 2024.
Article En | MEDLINE | ID: mdl-38716621

The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.


Berberine , Fibrosis , Signal Transduction , Berberine/pharmacology , Berberine/therapeutic use , Humans , Signal Transduction/drug effects , Smad Proteins/metabolism , Phytotherapy , Animals , Kidney Diseases/drug therapy , Kidney Diseases/etiology
14.
Nature ; 629(8014): 1062-1068, 2024 May.
Article En | MEDLINE | ID: mdl-38720082

Most chemistry and biology occurs in solution, in which conformational dynamics and complexation underlie behaviour and function. Single-molecule techniques1 are uniquely suited to resolving molecular diversity and new label-free approaches are reshaping the power of single-molecule measurements. A label-free single-molecule method2-16 capable of revealing details of molecular conformation in solution17,18 would allow a new microscopic perspective of unprecedented detail. Here we use the enhanced light-molecule interactions in high-finesse fibre-based Fabry-Pérot microcavities19-21 to detect individual biomolecules as small as 1.2 kDa, a ten-amino-acid peptide, with signal-to-noise ratios (SNRs) >100, even as the molecules are unlabelled and freely diffusing in solution. Our method delivers 2D intensity and temporal profiles, enabling the distinction of subpopulations in mixed samples. Notably, we observe a linear relationship between passage time and molecular radius, unlocking the potential to gather crucial information about diffusion and solution-phase conformation. Furthermore, mixtures of biomolecule isomers of the same molecular weight and composition but different conformation can also be resolved. Detection is based on the creation of a new molecular velocity filter window and a dynamic thermal priming mechanism that make use of the interplay between optical and thermal dynamics22,23 and Pound-Drever-Hall (PDH) cavity locking24 to reveal molecular motion even while suppressing environmental noise. New in vitro ways of revealing molecular conformation, diversity and dynamics can find broad potential for applications in the life and chemical sciences.


Peptides , Single Molecule Imaging , Diffusion , Isomerism , Light , Peptides/analysis , Peptides/chemistry , Peptides/radiation effects , Signal-To-Noise Ratio , Single Molecule Imaging/methods , Solutions , Protein Conformation , Molecular Weight , Motion
15.
Int J Cardiol ; 410: 132182, 2024 May 14.
Article En | MEDLINE | ID: mdl-38754583

BACKGROUND: This study aimed to assess the early- and mid-term outcomes of aortic root repair and replacement, and to provide evidence to improve root management in acute type A aortic dissection (AAAD). METHODS: This study enrolled 455 patients who underwent AAAD root repair (n = 307) or replacement (n = 148) between January 2016 and December 2017. Inverse probability of treatment weighting (IPTW) method was used to control for treatment selection bias. The primary outcomes were in-hospital mortality, mid-term survival, and proximal aortic reintervention. RESULTS: The success rate of root repair was 99.7%. The in-hospital mortality in the conservative root repair (CRR) and aggressive root replacement (ARR) were 8.1% and 10.8%. The median follow-up time was 67.76 months (IQR, 67-72 months). After adjusting for baseline factors, there was no significant differences in mid-term survival (p = .750) or the proximal aortic reintervention rate (p = .550) between the two groups. According to Cox analysis, age, hypertension, severe aortic regurgitation, CPB time, and concomitant CABG were all factors associated with mid-term mortality. Regarding reintervention, multivariate analysis identified renal insufficiency, bicuspid aortic valve, root diameter ≥ 45 mm, and severe aortic regurgitation as risk factors, while CRR did not increase the risk of reintervention. The subgroup analysis revealed heterogeneity in the effects of surgical treatment across diverse populations based on a variety of risk factors. CONCLUSIONS: For patients with AAAD, both CRR and ARR are appropriate operations with promising early and mid-term outcomes. The effects of treatment show heterogeneity across diverse populations based on various risk factors.

16.
Front Immunol ; 15: 1382449, 2024.
Article En | MEDLINE | ID: mdl-38745657

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Acute Lung Injury , Cell Communication , Gene Expression Profiling , Animals , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Mice , Humans , Cell Communication/immunology , Transcriptome , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/genetics , Disease Models, Animal , Single-Cell Analysis , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , COVID-19/immunology , COVID-19/genetics , Signal Transduction , Male , Macrophages/immunology , Macrophages/metabolism
18.
Cancer Lett ; 593: 216964, 2024 May 16.
Article En | MEDLINE | ID: mdl-38762193

Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-ß) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-ß promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-ß blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumor immune responses. In conclusion, M2-TAM-derived TGF-ß promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-ß receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.

19.
Phys Rev Lett ; 132(19): 191901, 2024 May 10.
Article En | MEDLINE | ID: mdl-38804936

We present the first lattice QCD calculation of the universal axial γW-box contribution □_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon four-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at □_{γW}^{VA}=3.65(7)_{lat}(1)_{PT}×10^{-3}. Consequently, this yields a slightly higher value of |V_{ud}|=0.973 86(11)_{exp}(9)_{RC}(27)_{NS}, reducing the previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box contribution to the axial charge g_{A}, denoted as □_{γW}^{VV}, and explore its potential implications.

20.
Nat Methods ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38744917

AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (1) tackle new tasks, like protein-ligand complex structure prediction, (2) investigate the process by which the model learns and (3) assess the model's capacity to generalize to unseen regions of fold space. Here we report OpenFold, a fast, memory efficient and trainable implementation of AlphaFold2. We train OpenFold from scratch, matching the accuracy of AlphaFold2. Having established parity, we find that OpenFold is remarkably robust at generalizing even when the size and diversity of its training set is deliberately limited, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced during training, we also gain insights into the hierarchical manner in which OpenFold learns to fold. In sum, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial resource for the protein modeling community.

...