Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 18(29): 19077-19085, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996185

ABSTRACT

Understanding the dynamics of "hot", highly energetic electrons resulting from nonradiative plasmon decay is crucial for optimizing applications in photocatalysis and energy conversion. This study presents an analysis of electron kinetics within plasmonic metals, focusing on the steady-state behavior during continuous-wave (CW) illumination. Using an inelastic spectroscopy technique, we quantify the temperature and lifetimes of distinct carrier populations during excitation. A significant finding is the monotonic increase in hot electron lifetime with decreases in electronic temperature. We also observe a 1.22× increase in hot electron temperature during intraband excitation compared to interband excitation and a corresponding 2.34× increase in carrier lifetime. The shorter lifetimes during interband excitation are hypothesized to result from direct recombination of nonthermal holes and hot electrons, highlighting steady-state kinetics. Our results help bridge the knowledge gap between ultrafast and steady-state spectroscopies, offering critical insights for optimizing plasmonic applications.

2.
J Phys Chem C Nanomater Interfaces ; 127(30): 14812-14821, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-38356733

ABSTRACT

Colloidal lead halide perovskite nanorods have recently emerged as promising optoelectronic materials. However, more information about how shape anisotropy impacts their complex dielectric function is required to aid the development of applications that take advantage of the strongly polarized absorption and emission. Here, we have determined the anisotropy of the complex dielectric function of CsPbBr3 nanorods by analyzing the ensemble absorption spectra in conjunction with the ensemble spectral fluorescence anisotropy. This strategy allows us to distinguish the absorption of light parallel and perpendicular to the main axis so that the real and imaginary components of the dielectric function along each direction can be determined by the use of an iterative matrix inversion (IMI) methodology. We find that quantum confinement gives rise to unique axis-dependent electronic features in the dielectric function that increase the overall fluorescence anisotropy in addition to the optical anisotropy that results from particle shape, even in the absence of quantum confinement. Further, the procedure outlined here provides a strategy for obtaining anisotropic complex dielectric functions of colloidal materials of varying composition and aspect ratios using ensemble solution-phase spectroscopy.

3.
Nano Lett ; 22(13): 5120-5126, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35759697

ABSTRACT

Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.


Subject(s)
Nanostructures , Surface Plasmon Resonance , Electrons , Magnetic Fields , Metals , Nanostructures/chemistry , Surface Plasmon Resonance/methods
4.
Adv Mater ; 32(31): e1907623, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32583926

ABSTRACT

The development of tin (Sn)-based perovskite solar cells (PSCs) is hindered by their lower power conversion efficiency and poorer stability compared to the lead-based ones, which arise from the easy oxidation of Sn2+ to Sn4+ . Herein, phenylhydrazine hydrochloride (PHCl) is introduced into FASnI3 (FA = NH2 CH  NH2 + ) perovskite films to reduce the existing Sn4+ and prevent the further degradation of FASnI3 , since PHCl has a reductive hydrazino group and a hydrophobic phenyl group. Consequently, the device achieves a record power conversion efficiency of 11.4% for lead-free PSCs. Besides, the unencapsulated device displays almost no efficiency reduction in a glove box over 110 days and shows efficiency recovery after being exposed to air, due to a proposed self-repairing trap state passivation process.

SELECTION OF CITATIONS
SEARCH DETAIL