Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
2.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615917

ABSTRACT

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Subject(s)
Iron , Mice, Inbred C57BL , Mitochondria , Organelle Biogenesis , Osteoclasts , Periodontitis , Animals , Mice , Iron/metabolism , RAW 264.7 Cells , Periodontitis/drug therapy , Periodontitis/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Osteogenesis/drug effects , Male , Bone Resorption/metabolism , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/etiology , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology
3.
ACS Chem Biol ; 18(10): 2097-2100, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37814995

ABSTRACT

Prof. Chuan He was awarded the Tetrahedron Prize this year, one of the world's most prestigious prizes in organic chemistry. This In Focus briefly delves into the remarkable work of Prof. Chuan He and explores how his recent accolades underscore his impact on the world of science. His seminal contributions have paved the way for new directions at the interface of organic chemistry and life sciences.


Subject(s)
Awards and Prizes , Chemistry
4.
Nat Methods ; 20(6): 908-917, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188954

ABSTRACT

The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.


Subject(s)
Mitochondria , Proteomics , Endoplasmic Reticulum , Biotin
5.
Int J Antimicrob Agents ; 61(6): 106801, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37019242

ABSTRACT

Periodontitis is caused by oral flora imbalance, which leads to immune imbalance. Porphyromonas gingivalis is a keystone pathogen in periodontitis, causing the blooming of inflammophilic microbes, and becoming dormant to resist antibiotics. Targeted interventions are needed to destroy this pathogen and collapse its inflammophilic flora. Therefore, a targeting nanoagent antibody-conjugated liposomal drug carrier with ginsenoside Rh2 (A-L-R) was developed for pleiotropic benefits. A-L-R showed high quality in high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR), and transmission electron microscope (TEM) detection. Only P. gingivalis was influenced by A-L-R, as shown by live/dead cell staining and a series of antimicrobial effects assays. With fluorescence in situ hybridization (FISH) staining and in propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), the clearance of P. gingivalis by A-L-R was more than for other groups, and only the proportion of P. gingivalis was reduced by A-L-R in monospecies culture. Moreover, in a periodontitis model, A-L-R targeted P. gingivalis with high efficiency and low toxicity, maintaining homeostasis with a relatively stable oral microflora. This targeting nanomedicine offers new strategies for periodontitis therapy, providing a foundation for the prevention and treatment of periodontitis.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Humans , Porphyromonas gingivalis/genetics , In Situ Hybridization, Fluorescence , Periodontitis/drug therapy , Periodontitis/microbiology , Periodontitis/prevention & control , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Homeostasis
6.
bioRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945504

ABSTRACT

The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.

7.
mSphere ; 8(2): e0067922, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36853046

ABSTRACT

Caries are chronic infections in which the cariogenic biofilm plays a critical role in disease occurrence and progression. Photodynamic therapy (PDT) is a new effective treatment that is receiving wide attention in the antibacterial field, but it can lead to the upregulation of heat shock proteins (HSPs), which enhances bacterial resistance. Herein, we incorporated HSP inhibitors with PDT to evaluate the effect on Streptococcus mutans, Streptococcus sobrinus, and Streptococcus sanguinis under planktonic conditions and on cariogenic biofilms. Additionally, a model of caries was established in 2-week-old rats, and anticaries properties were evaluated by Keyes' scoring. Importantly, the combination of HSP inhibitors and PDT had outstanding efficiency in inhibiting the growth of tested Streptococcus strains and the formation of either monomicrobial or multispecies biofilms in vitro. In addition, the quantity of colonized streptococci and the severity of carious lesions were also distinctly suppressed in vivo. Overall, the synergistic application of HSP inhibitors and PDT has promising potential in the prevention and treatment of dental caries. IMPORTANCE Effective therapies for the prevention and control of caries are urgently needed. Cariogenic streptococci play a key role in the occurrence and progression of caries. Recently, photodynamic therapy has been demonstrated to have good antibacterial efficiency, but it can cause a heat shock response in bacteria, which may weaken its practical effects. We indicate here an effective therapeutic strategy of combining heat shock protein inhibitors and photodynamic therapy, which shows excellent inhibition toward three dominant streptococci related to caries and suppression of carious progression in a rat model. Further development for clinical application is promising.


Subject(s)
Dental Caries , Photochemotherapy , Rats , Animals , Dental Caries/drug therapy , Dental Caries/prevention & control , Dental Caries Susceptibility , Streptococcus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
8.
Sensors (Basel) ; 22(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808466

ABSTRACT

In anchor-free object detection, the center regions of bounding boxes are often highly weighted to enhance detection quality. However, the central area may become less significant in some situations. In this paper, we propose a novel dual attention-based approach for the adaptive weight assignment within bounding boxes. The proposed improved dual attention mechanism allows us to thoroughly untie spatial and channel attention and resolve the confusion issue, thus it becomes easier to obtain the proper attention weights. Specifically, we build an end-to-end network consisting of backbone, feature pyramid, adaptive weight assignment based on dual attention, regression, and classification. In the adaptive weight assignment module based on dual attention, a parallel framework with the depthwise convolution for spatial attention and the 1D convolution for channel attention is applied. The depthwise convolution, instead of standard convolution, helps prevent the interference between spatial and channel attention. The 1D convolution, instead of fully connected layer, is experimentally proved to be both efficient and effective. With the adaptive and proper attention, the correctness of object detection can be further improved. On public MS-COCO dataset, our approach obtains an average precision of 52.7%, achieving a great increment compared with other anchor-free object detectors.


Subject(s)
Neural Networks, Computer
9.
Int J Biol Sci ; 17(14): 4060-4072, 2021.
Article in English | MEDLINE | ID: mdl-34671220

ABSTRACT

The Hippo pathway plays an important role in many pathophysiological processes, including cell proliferation and differentiation, cell death, cell migration and invasion. Because of its extensive functions, Hippo pathway is closely related to not only growth and development, but also many diseases, including inflammation and cancer. In this study, the role of Hippo pathway in craniofacial diseases and hard tissue remodeling was reviewed, in attempting to find new research directions.


Subject(s)
Face/pathology , Hippo Signaling Pathway , Periodontal Diseases/metabolism , Skull/pathology , Humans
10.
Sensors (Basel) ; 21(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804330

ABSTRACT

In object detection of remote sensing images, anchor-free detectors often suffer from false boxes and sample imbalance, due to the use of single oriented features and the key point-based boxing strategy. This paper presents a simple and effective anchor-free approach-RatioNet with less parameters and higher accuracy for sensing images, which assigns all points in ground-truth boxes as positive samples to alleviate the problem of sample imbalance. In dealing with false boxes from single oriented features, global features of objects is investigated to build a novel regression to predict boxes by predicting width and height of objects and corresponding ratios of l_ratio and t_ratio, which reflect the location of objects. Besides, we introduce ratio-center to assign different weights to pixels, which successfully preserves high-quality boxes and effectively facilitates the performance. On the MS-COCO test-dev set, the proposed RatioNet achieves 49.7% AP.

12.
Proc Natl Acad Sci U S A ; 117(36): 22068-22079, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839320

ABSTRACT

RNA-protein interactions underlie a wide range of cellular processes. Improved methods are needed to systematically map RNA-protein interactions in living cells in an unbiased manner. We used two approaches to target the engineered peroxidase APEX2 to specific cellular RNAs for RNA-centered proximity biotinylation of protein interaction partners. Both an MS2-MCP system and an engineered CRISPR-Cas13 system were used to deliver APEX2 to the human telomerase RNA hTR with high specificity. One-minute proximity biotinylation captured candidate binding partners for hTR, including more than a dozen proteins not previously linked to hTR. We validated the interaction between hTR and the N6-methyladenosine (m6A) demethylase ALKBH5 and showed that ALKBH5 is able to erase the m6A modification on endogenous hTR. ALKBH5 also modulates telomerase complex assembly and activity. MS2- and Cas13-targeted APEX2 may facilitate the discovery of novel RNA-protein interactions in living cells.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endonucleases/metabolism , Multifunctional Enzymes/metabolism , Protein Interaction Mapping/methods , RNA/metabolism , Telomerase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Biotinylation , CRISPR-Cas Systems , DNA Methylation , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Endonucleases/genetics , HEK293 Cells , Humans , Mass Spectrometry , Multifunctional Enzymes/genetics , Protein Binding , RNA/genetics , Telomerase/genetics
14.
J Am Chem Soc ; 142(10): 4539-4543, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32077696

ABSTRACT

DNA 5-methylcytosine (5mC)-specific mapping has been hampered by severe DNA degradation and the presence of 5-hydroxymethylcytosine (5hmC) using the conventional bisulfite sequencing approach. Here, we present a 5mC-specific whole-genome amplification method (5mC-WGA), with which we achieved 5mC retention during DNA amplification from limited input down to 10 pg scale with limited interference from 5hmC signals, providing DNA 5mC methylome with high reproducibility and accuracy.


Subject(s)
5-Methylcytosine/chemistry , DNA/analysis , Nucleic Acid Amplification Techniques/methods , Sequence Analysis, DNA/methods , Animals , DNA/chemistry , DNA Methylation , Humans , Mice , Sulfites/chemistry , Whole Genome Sequencing
15.
Nat Microbiol ; 5(4): 584-598, 2020 04.
Article in English | MEDLINE | ID: mdl-32015498

ABSTRACT

Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.


Subject(s)
Adenosine/analogs & derivatives , DEAD Box Protein 58/genetics , Immune Evasion/genetics , Interferon-beta/genetics , Metapneumovirus/immunology , RNA, Viral/genetics , A549 Cells , Adenosine/immunology , Adenosine/metabolism , Animals , Chlorocebus aethiops , DEAD Box Protein 58/immunology , Gene Expression Regulation , Genome, Viral/immunology , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-beta/immunology , Metapneumovirus/genetics , Metapneumovirus/growth & development , NF-kappa B/genetics , NF-kappa B/immunology , Paramyxoviridae Infections/genetics , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , RNA, Viral/immunology , Receptors, Immunologic , Sigmodontinae , Signal Transduction , THP-1 Cells , Vero Cells , Virion/genetics , Virion/growth & development , Virion/immunology
16.
Nat Commun ; 10(1): 4595, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597913

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent internal modification of mRNAs in most eukaryotes. Here we show that RNAs of human respiratory syncytial virus (RSV) are modified by m6A within discreet regions and that these modifications enhance viral replication and pathogenesis. Knockdown of m6A methyltransferases decreases RSV replication and gene expression whereas knockdown of m6A demethylases has the opposite effect. The G gene transcript contains the most m6A modifications. Recombinant RSV variants expressing G transcripts that lack particular clusters of m6A display reduced replication in A549 cells, primary well differentiated human airway epithelial cultures, and respiratory tracts of cotton rats. One of the m6A-deficient variants is highly attenuated yet retains high immunogenicity in cotton rats. Collectively, our results demonstrate that viral m6A methylation upregulates RSV replication and pathogenesis and identify viral m6A methylation as a target for rational design of live attenuated vaccine candidates for RSV and perhaps other pneumoviruses.


Subject(s)
Adenosine/analogs & derivatives , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Virus Replication/immunology , A549 Cells , Adenosine/genetics , Adenosine/immunology , Adenosine/metabolism , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Female , HeLa Cells , Humans , Male , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/pathogenicity , Sigmodontinae , Up-Regulation/immunology , Vaccines, Attenuated/immunology , Vero Cells , Virulence/genetics , Virulence/immunology , Virus Replication/genetics
17.
Nature ; 567(7748): 414-419, 2019 03.
Article in English | MEDLINE | ID: mdl-30867593

ABSTRACT

DNA and histone modifications have notable effects on gene expression1. Being the most prevalent internal modification in mRNA, the N6-methyladenosine (m6A) mRNA modification is as an important post-transcriptional mechanism of gene regulation2-4 and has crucial roles in various normal and pathological processes5-12. However, it is unclear how m6A is specifically and dynamically deposited in the transcriptome. Here we report that histone H3 trimethylation at Lys36 (H3K36me3), a marker for transcription elongation, guides m6A deposition globally. We show that m6A modifications are enriched in the vicinity of H3K36me3 peaks, and are reduced globally when cellular H3K36me3 is depleted. Mechanistically, H3K36me3 is recognized and bound directly by METTL14, a crucial component of the m6A methyltransferase complex (MTC), which in turn facilitates the binding of the m6A MTC to adjacent RNA polymerase II, thereby delivering the m6A MTC to actively transcribed nascent RNAs to deposit m6A co-transcriptionally. In mouse embryonic stem cells, phenocopying METTL14 knockdown, H3K36me3 depletion also markedly reduces m6A abundance transcriptome-wide and in pluripotency transcripts, resulting in increased cell stemness. Collectively, our studies reveal the important roles of H3K36me3 and METTL14 in determining specific and dynamic deposition of m6A in mRNA, and uncover another layer of gene expression regulation that involves crosstalk between histone modification and RNA methylation.


Subject(s)
Adenosine/analogs & derivatives , Histones/chemistry , Histones/metabolism , Lysine/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Transcription, Genetic , Adenosine/metabolism , Animals , Cell Differentiation , Cell Line , Embryonic Stem Cells/metabolism , Humans , Lysine/chemistry , Methylation , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Transcriptome/genetics
18.
Nat Rev Mol Cell Biol ; 19(12): 808, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30341428

ABSTRACT

In Figure 5, translation initiation is promoted not by the indicated protein, but by YTHDF1 (see below).

19.
Nat Cell Biol ; 20(9): 1098, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29880862

ABSTRACT

In the version of this Article originally published, the authors incorrectly listed an accession code as GES90642. The correct code is GSE90642 . This has now been amended in all online versions of the Article.

20.
Genome Res ; 28(7): 933-942, 2018 07.
Article in English | MEDLINE | ID: mdl-29848492

ABSTRACT

Genetic variants associated with autism spectrum disorders (ASDs) are enriched in genes encoding synaptic proteins and chromatin regulators. Although the role of synaptic proteins in ASDs is widely studied, the mechanism by which chromatin regulators contribute to ASD risk remains poorly understood. Upon profiling and analyzing the transcriptional and epigenomic features of genes expressed in the cortex, we uncovered a unique set of long genes that contain broad enhancer-like chromatin domains (BELDs) spanning across their entire gene bodies. Analyses of these BELD genes show that they are highly transcribed with frequent RNA polymerase II (Pol II) initiation and low Pol II pausing, and they exhibit frequent chromatin-chromatin interactions within their gene bodies. These BELD features are conserved from rodents to humans, are enriched in genes involved in synaptic function, and appear post-natally concomitant with synapse development. Importantly, we find that BELD genes are highly implicated in neurodevelopmental disorders, particularly ASDs, and that their expression is preferentially down-regulated in individuals with idiopathic autism. Finally, we find that the transcription of BELD genes is particularly sensitive to alternations in ASD-associated chromatin regulators. These findings suggest that the epigenomic regulation of BELD genes is important for post-natal cortical development and lend support to a model by which mutations in chromatin regulators causally contribute to ASDs by preferentially impairing BELD gene transcription.


Subject(s)
Autism Spectrum Disorder/genetics , Chromatin/genetics , Regulatory Sequences, Nucleic Acid/genetics , Animals , Autistic Disorder/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Neurogenesis/genetics , RNA Polymerase II/genetics , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...