Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Immunopathol Pharmacol ; 38: 3946320241249445, 2024.
Article in English | MEDLINE | ID: mdl-38679570

ABSTRACT

BACKGROUND AND OBJECTIVES: Metformin, an oral hypoglycemic drug, has been suggested to possess antitumour activity in several types of cancers. Additionally, interleukin-8 (IL-8) has been reported to be involved in the development and metastasis of many cancers. However, the effect of metformin on IL-8 expression in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to investigate whether metformin could inhibit IL-8 expression to exert an inhibitory effect on HCC progression. MATERIALS AND METHODS: The IL-8 levels were measured in the plasma of 159 HCC patients (86 men, 73 women; average age 56 years) and in the culture supernatant of HCC cells (Hep3B and HuH7) using flow cytometry. In addition, the protein expression levels of IL-8 were also validated by the Human Protein Atlas (HPA) database. The prognostic value of IL-8 was evaluated using the Kaplan-Meier Plotter database. The association between IL-8 expression and immune checkpoints was estimated using the TIMER and The Cancer Genome Atlas (TCGA) databases. What's more, bioinformatics analysis, western blotting, and transwell assays were conducted to illustrate the molecular mechanism of metformin (≤1 mM) on IL-8 in HCC. RESULTS: IL-8 expression was found to be increased in the plasma of HCC patients, which is consistent with the expression of IL-8 in HCC cells and tissues. High expression of IL-8 was significantly related to poor prognosis. In addition, IL-8 was positively correlated with immune checkpoints in HCC. Notably, we found that low-dose metformin could inhibit the secretion of IL-8 by HCC cells and the migration of HCC cells. Mechanistically, low-dose metformin significantly suppresses HCC metastasis mainly through the AMPK/JNK/IL-8/MMP9 pathway. CONCLUSION: The results indicate that low-dose metformin can inhibit HCC metastasis by suppressing IL-8 expression. Targeting the AMPK/JNK/IL-8 axis may be a promising treatment strategy for patients with HCC metastasis.


Subject(s)
AMP-Activated Protein Kinases , Carcinoma, Hepatocellular , Interleukin-8 , Liver Neoplasms , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Interleukin-8/metabolism , Interleukin-8/blood , Male , Female , Middle Aged , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , Aged , Signal Transduction/drug effects , Cell Movement/drug effects , Neoplasm Metastasis , MAP Kinase Signaling System/drug effects , Hypoglycemic Agents/pharmacology
2.
Cytokine ; 177: 156555, 2024 05.
Article in English | MEDLINE | ID: mdl-38387232

ABSTRACT

Interferon-alpha (IFN-α) is widely used in the clinical treatment of patients with chronic hepatitis B and hepatocellular carcinoma (HCC). However, high levels of CXCL8 are associated with resistance to IFN-α therapy and poorer prognosis in advanced cancers. In this study, we investigated whether IFN-α could directly induce the production of CXCL8 in HCC cells and whether CXCL8 could antagonize the antitumor activity of IFN-α. We found that IFN-α not only upregulated the expression of the inducible genes CXCL9, CXCL10, CXCL11 and PD-L1, but also significantly stimulated CXCL8 secretion in HCC cells. Mechanically, IFN-α induces CXCL8 expression by activating the AKT and JNK pathways. In addition, our results demonstrate that IFN-α exposure significantly increases the differentiation of HCC stem cells, but this effect is reversed by the addition of the CXCL8 receptor CXCR1/2 inhibitor Reparixin and STAT3 inhibitor Stattic. Besides, our study reveals that the cytokine CXCL8 secreted by IFN-α-induced HCC cells inhibits T-cell function. Conversely, inhibition of CXCL8 promotes TNF-α and IFN-γ secretion by T cells. Finally, liver cancer patients who received anti-PD-1/PD-L1 immunotherapy with high CXCL8 expression had a lower immunotherapy efficacy. Overall, our findings clarify that IFN-α triggers immunosuppression and cancer stem cell differentiation in hepatocellular carcinoma by upregulating CXCL8 secretion. This discovery provides a novel approach to enhance the effectiveness of HCC treatment in the future.


Subject(s)
Carcinoma, Hepatocellular , Interferon-alpha , Interleukin-8 , Liver Neoplasms , Humans , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Differentiation , Immunosuppression Therapy , Interferon-alpha/pharmacology , Interferon-gamma/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Interleukin-8/metabolism
3.
Clin Immunol ; 261: 109925, 2024 04.
Article in English | MEDLINE | ID: mdl-38310993

ABSTRACT

BACKGROUND: Inflammatory factors are being recognized as critical modulators of host antitumor immunity in liver cancer. We have previously shown that tumor cell-released LC3B positive extracellular vesicles (LC3B+ EVs) are responsible for malignant progression by dampening antitumor immunity. However, the relationship between LC3B+ EVs and inflammatory factors in the regulation of the liver cancer microenvironment remains unclear. METHODS: Flow cytometry analyses were performed to examine the panel of 12 cytokines, the main source of positive cytokines, and plasma LC3B+ EVs carrying HSP90α in peripheral blood of liver cancer patients. We correlated the levels of plasma IL-6, IL-8 with LC3B+ EVs carrying HSP90α and with prognosis. In vitro culture of healthy donor leukocytes with liver cancer-derived LC3B+ EVs was performed to evaluate the potential effect of blocking HSP90α, IL-6 or IL-8 alone or in combination with PD-1 inhibitor on CD8+ T cell function. We also investigated the potential associations of MAP1LC3B, HSP90AA1, IL6 or IL8 with immunotherapy efficacy using the TCGA databases. RESULTS: In liver cancer patients, plasma IL-6 and IL-8 levels were significantly higher than in healthy controls and associated with poor clinical outcome. In peripheral blood, levels of plasma LC3B+ EVs carrying HSP90α were significantly elevated in HCC patients and positively associated with IL-6 and IL-8 levels, which are predominantly secreted by monocytes and neutrophils. Moreover, LC3B+ EVs from human liver cancer cells promoted the secretion of IL-6 and IL-8 by leukocytes through HSP90α. Besides, we show that the cytokines IL-6 and IL-8 secreted by LC3B+ EVs-induced leukocytes were involved in the inhibition of CD8+ T-cell function, while blockade of the HSP90α on the LC3B+ EVs, IL-6, or IL-8 could enhance anti-PD-1-induced T cell reinvigoration. Finally, patients who received anti-PD-1/PD-L1 immunotherapy with high MAP1LC3B, HSP90AA1, IL6, or IL8 expression had a lower immunotherapy efficacy. CONCLUSIONS: Our data suggest that liver cancer-derived LC3B+ EVs promote a pro-oncogenic inflammatory microenvironment by carrying membrane-bound HSP90α. Targeting HSP90α on the LC3B+ EVs, IL-6, or IL-8 may synergize with anti-PD-1 treatment to enhance the CD8+ T-cell functions, which may provide novel combination strategies in the clinic for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Interleukin-6/metabolism , Interleukin-8/metabolism , Liver Neoplasms/drug therapy , Tumor Microenvironment , Cytokines/metabolism , Immunotherapy , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology
4.
Environ Res ; 220: 115221, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36610538

ABSTRACT

The efficient catalytic activity and strong durability possibility of carbon-based three-dimensional fiber materials remains an important challenge in Electro-Fenton advanced oxidation technology. Graphite felt (GF) is a promising electrode material for 2-electron oxygen reduction reaction but with higher catalytic inertia. Anodizing modification of GF has been proved to enhance it electro-catalytic property, but the disadvantages of excessive or insufficient oxidation of GF need further improved. Herein, the surface reconstituted graphite felt by anodizing and HNO3 ultrasonic integrated treatment was used as cathode to degrade norfloxacin (NOR) and the substantial role of different modification processes was essentially investigated. Compared with the single modification process, the synergistic interaction between these two methods can generate more defective active sites (DASs) on GF surface and greatly improved 2-electron ORR activity. The H2O2 can be further co-activated by Fe2+ and DASs into •OH(ads and free) and •O2- to efficiently degrade NOR. The treated GF with 20 min anodizing and 1 h HNO3 ultrasound had the highest electrocatalytic activity in a wide electric potential (-0.4 V to -0.8 V) and pH range (3-9) in system and the efficient removal rate of NOR was basically maintained after 5 cycles. Under optimal reaction conditions, 50 mg L-1 NOR achieved 93% degradation and almost 63% of NOR was completely mineralized within 120 min. The possible NOR degradation pathways and ecotoxicity of intermediates were analyzed by LC-MS and T.E.S.T. theoretical calculation. This paper provided the underlying insights into designing a high-efficiency carbon-based cathode materials for commercial antibiotic wastewater treatment.


Subject(s)
Graphite , Water Pollutants, Chemical , Graphite/chemistry , Norfloxacin , Hydrogen Peroxide/chemistry , Iron/chemistry , Catalytic Domain , Carbon , Oxidation-Reduction , Electrodes , Anti-Bacterial Agents , Water Pollutants, Chemical/chemistry
5.
Cell Death Discov ; 8(1): 200, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35422067

ABSTRACT

Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that play indispensable roles in cancers, including colorectal cancer (CRC). However, the role of SNORD1C in CRC is unclear. In the current study, SNORD1C expression was measured in CRC tissues using quantitative real-time PCR. A series of in vivo and in vitro experiments were performed to examine the functional role of SNORD1C in CRC. Quantitative real-time PCR, western blotting, sphere formation assay, and chemotherapy resistance analysis were conducted to illustrate the SNORD1C molecular mechanism. SNORD1C was upregulated in CRC and that high SNORD1C expression was related to poor prognosis. After knocking down SNORD1C in CRC cell lines, cell proliferation, colony formation, cell migration, and invasion were alleviated, while apoptosis was increased. Transcriptional RNA-sequencing analysis revealed that following SNORD1C knockdown, ß-catenin was downregulated, as was the transcription factor TCF7, which inhibited the Wnt/ß-catenin pathway. Meanwhile, levels of the stem cell-related factors were reduced, diminishing cell stemness and tumorigenesis. Our findings suggest that SNORD1C functions via the Wnt/ß-catenin pathway to enhance cancer cell stemness in CRC and could be a predictive biomarker for the prognosis ad aggressiveness of this malignancy. Additionally, targeting SNORD1C may be a novel therapeutic strategy for CRC.

6.
Int J Gen Med ; 14: 7411-7422, 2021.
Article in English | MEDLINE | ID: mdl-34744452

ABSTRACT

BACKGROUND: Fat mass and obesity-associated protein (FTO) is a critical N6-methyladenosine (m6A) demethylase that participates in tumorigenesis and is associated with the prognosis of patients in some cancers. However, the key roles of FTO in pan-cancer are still largely obscure. METHODS: FTO expression levels in pan-cancer were estimated via the Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA) databases. Univariate survival analysis was used to estimate the effects of FTO on prognosis. In addition, we used the Tumor Immune Evaluation Resource (TIMER) to assess the immune cell infiltration of FTO gene across cancers. The association of FTO expression with immune checkpoint genes expression, DNA mismatch repair (MMR) gene mutation, DNA methyltransferases, microsatellite instability (MSI), and tumor mutational burden (TMB) was investigated using Spearman's correlation analysis. Moreover, Gene Set Enrichment Analysis (GSEA) was utilized to identify critical pathways in cancers. The STRING website was used to reveal the protein-protein interaction (PPI) network of FTO. RESULTS: FTO was aberrantly expressed across cancers and survival analysis demonstrated that its expression was associated with clinical prognosis of many cancer patients. Specifically, FTO expression was significantly associated with immune infiltrating cells in colon adenocarcinoma, kidney renal clear cell carcinoma, and liver hepatocellular carcinoma. In addition, FTO expression was significantly associated with immune checkpoint genes expression, MMR, DNA methyltransferases levels, TMB, and MSI in multiple cancers. Moreover, the GSEA unveiled that FTO was involved in the regulation of tumors and immune-related signaling pathways. In addition, several m6A related genes were implicated in the PPI network of FTO. CONCLUSION: FTO was related to patients' prognosis and tumor immune infiltrates in various cancers, and may serve as a novel and potential prognostic and immune biomarker in human pan-cancer.

7.
Bioengineered ; 12(2): 11648-11661, 2021 12.
Article in English | MEDLINE | ID: mdl-34699318

ABSTRACT

Colorectal cancer (CRC) is a common malignancy that has both low 5-year survival and high prevalence. Immunotherapy has achieved impressive progress for treatment of CRC, but still faces huge challenges. Although large tumor suppressor 2 (LATS2) is well accepted to be related to cancer progression, the prognostic potential and immune response role of LATS2 expression in CRC remain unclear. To investigate the value of LATS2 for prognosis and immune infiltration, a retrospective study of 213 CRC patients was carried out. We determined the expression of LATS2 in tumor tissues by immunohistochemistry. The results indicated that LATS2 expression was down-regulated in CRC tissues and clearly related to tumor differentiation (P = 0.002) and TNM stage (P = 0.002). Low LATS2 expression and TNM stage were subsequently identified as significant independent predictors of prognosis in CRC by univariate and multivariate analyses. In Kaplan-Meier survival analyses, CRC patients with elevated LATS2 expression and early TNM stage had better overall survival. We further found that LATS2 was involved in the regulation of immune-related pathways and that its expression was positively related to tumor-infiltrating immune cells by GSEA, TIMER, and ssGSEA analyses. In summary, our data imply that LATS2 may act as a cancer suppressor gene and be correlated with clinical prognosis and immune infiltration in CRC. Thus, LATS2 may be applied as a novel biomarker for predicting clinical outcomes and immune infiltration levels in CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Multivariate Analysis , Prognosis , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , Young Adult
8.
Bioengineered ; 12(1): 8943-8952, 2021 12.
Article in English | MEDLINE | ID: mdl-34702132

ABSTRACT

Colorectal cancer (CRC) is the second most incident cancer and third leading cause of cancer-related mortality worldwide. Small nucleolar RNAs (snoRNAs) are small non-coding RNAs located in the nucleoli of cells, and play key roles in multiple cancers. However, the role of serum snoRNAs in CRC remains unknown. We analyzed the expression of the snoRNA SNORD1C in the serum of patients with CRC using quantitative real-time polymerase chain reaction (qRT-PCR) (n = 122). The receiver operating characteristic (ROC) curves were estimated, and the area under the ROC curve (AUC) was calculated. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of co-expressed genes was performed using the database for annotation, visualization, and integrated discovery (DAVID), and visualized by R language. The results showed that the expression of SNORD1C in patients with CRC (n = 122) was significantly higher than that in normal individuals (n = 50) and patients with benign colorectal disease (n = 33) (P < 0.05). The overexpression of serum SNORD1C was related to poor tissue differentiation and high carcinoembryonic antigen (CEA) levels (P < 0.05). In the ROC curve analysis, SNORD1C serum expression combined with CEA offered better predictive value for the diagnosis of CRC (AUC = 0.838) compared with SNORD1C (AUC = 0.748) or CEA (AUC = 0.715) alone. High expression of SNORD1C was found to be closely associated with prognosis and unfavorable outcomes in patient with CRC. Therefore, serum SNORD1C may be a noninvasive tumor biomarker for diagnosis of CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , RNA, Small Nucleolar/genetics , RNA, Untranslated/genetics , Case-Control Studies , Colorectal Neoplasms/genetics , Female , Humans , Male , Middle Aged , Prognosis , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL