Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Mol Med ; 30(1): 129, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179991

ABSTRACT

Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.


Subject(s)
Mitochondria , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms , Signal Transduction , Humans , Mitochondria/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Animals , Energy Metabolism
2.
Gels ; 10(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39195019

ABSTRACT

Cellulose nanofibers (NF) were extracted from kapok fibers using TEMPO oxidation, followed by a combination of mechanical grinding and ultrasonic processing. The TEMPO-mediated oxidation significantly impacted the mechanical disintegration behavior of the kapok fibers, resulting in a high NF yield of 98%. This strategy not only improved the fibrillation efficiency but also reduced overall energy consumption during NF preparation. An ultralight and highly porous NF-based aerogel was successfully prepared using a simple ice-templating technique. It had a low density in the range of 3.5-11.2 mg cm-3, high compressional strength (160 kPa), and excellent thermal insulation performance (0.024 W m-1 K-1). After silane modification, the aerogel displayed an ultralow density of 7.9 mg cm-3, good hydrophobicity with a water contact angle of 128°, and excellent mechanical compressibility with a high recovery of 92% at 50% strain. Benefiting from the silene support structure, it showed a high oil absorptive capacity (up to 71.4 g/g for vacuum pump oil) and a remarkable oil recovery efficiency of 93% after being reused for 10 cycles. These results demonstrate that our strategy endows nanocellulose-based aerogels with rapid shape recovery and high liquid absorption capabilities.

3.
Cell Transplant ; 33: 9636897241273689, 2024.
Article in English | MEDLINE | ID: mdl-39180383

ABSTRACT

Immune rejection presents a significant challenge in xenogenic meniscal transplantation. Pigs are widely regarded as an advantageous tissue source for such transplants, with porcine GGTA1, CMAH, and B4GALNT2 being among the most common xenoreactive antigen (Ag) genes. While some studies have suggested that allogeneic meniscus (AM) transplants may exhibit immunoprivileged properties, our study observed slight immunological rejection has been observed following contact between human meniscal cells (HMCs) and human peripheral blood mononuclear cells (PBMCs). Given the limited systematic research on immune responses following xenograft meniscus transplantation, we established porcine meniscus transplantation (PMT) models to comprehensively assess the immunogenicity of porcine meniscus (PM) from both innate and adaptive immune perspectives. Our investigations confirmed that PMT beneath the epidermis led to innate cell infiltration into the xenografts and T-cell activation in local lymph nodes. T-cell activation upregulated the interleukin (IL)-17 signaling pathway, disrupting collagen organization and metabolic processes, thereby hindering PM regeneration. Using freeze-thaw treatment on PM alleviated T-cell activation post-transplantation by eliminating xenogenic DNA. In vitro findings demonstrated that gene editing in porcine meniscal cells (PMCs) suppressed human T-cell activation by downregulating the expression of xenoreactive Ag genes. These results suggest that GGTA1/CMAH/B4GALNT2 knockout (KO) pigs hold significant promise for advancing the field of meniscal transplantation.


Subject(s)
Galactosyltransferases , Graft Rejection , Meniscus , T-Lymphocytes , Animals , Swine , Humans , Graft Rejection/immunology , Galactosyltransferases/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Down-Regulation , Antigens, Heterophile/immunology , Transplantation, Heterologous , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Freezing , Mixed Function Oxygenases
4.
ACS Pharmacol Transl Sci ; 7(7): 2054-2062, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39022359

ABSTRACT

Positron emission tomography (PET) imaging of amyloid-ß (Aß) has emerged as a crucial strategy for early diagnosis and monitoring of therapeutic advancements targeting Aß. In our previous first-in-human study, we identified that [18F]Florbetazine ([18F]92), featuring a diaryl-azine scaffold, exhibits higher cortical uptake in Alzheimer's disease (AD) patients compared to healthy controls (HC). Building upon these promising findings, this study aimed to characterize the diagnostic potential of [18F]92 and its dimethylamino-modified tracer [18F]91 and further compare them with the benchmark [11C]PiB in the same cohort of AD patients and age-matched HC subjects. The cortical accumulation of these tracers was evident, with no significant radioactivity retention observed in the cortex of HC subjects, consistent with [11C]PiB images (correlation coefficient of 0.9125 and 0.7883 between [18F]Florbetazine/[18F]91 and [11C]PiB, respectively). Additionally, quantified data revealed higher standardized uptake value ratios (SUVR) (with the cerebellum as the reference region) of [18F]Florbetazine/[18F]91 in AD patients compared to the HC group ([18F]Florbetazine: 1.49 vs 1.16; [18F]91: 1.33 vs 1.20). Notably, [18F]Florbetazine exhibited less nonspecific bindings in myelin-rich regions, compared to the dimethylamino-substituted [18F]91, akin to [11C]PiB. Overall, this study suggests that [18F]Florbetazine displays superior characteristics to [18F]91 in identifying Aß pathology in AD. Furthermore, the close agreement between the uptakes in nontarget regions for [18F]Florbetazine and [11C]PiB in this head-to-head comparison study underscores its suitability for both clinical and research applications.

5.
Bioresour Technol ; 404: 130914, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823563

ABSTRACT

As a new technology for accurate utilization of sludge resources, sludge inorganic-organic matter separation (IOMS) has attracted wide attention. This study examined the impact of this pretreatment on environmental and economic performance of sludge composting and incineration using life cycle assessment (LCA) and whole life costing (WLC). LCA results indicated that IOMS pretreatment reduced the energy conservation and emission reduction (ECER) values of composting and incineration by 56 % and 76 %, respectively. Meanwhile, WLC exhibited that IOMS pretreatment could cut the break-even year of incineration from 11 years to 4 years. The combination of organic sludge incineration/composting with inorganic sludge sintering ceramsite reveals excellent environmental and economic performance. The application optimization hypothesis analysis of these two routes in various provinces of China indicates that Jiangsu has the greatest development potential and should become a major promotion region.


Subject(s)
Sewage , Composting/methods , Incineration , Environment , China
6.
Pharmacol Ther ; 259: 108671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830387

ABSTRACT

N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.


Subject(s)
Adenosine , Leukemia, Myeloid, Acute , RNA, Untranslated , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Animals
7.
Environ Sci Pollut Res Int ; 31(28): 41208-41220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849616

ABSTRACT

Reasonable treatment of large amounts of sludge excavated from landfills has gained increasing attention due to the diminishing availability of landfill space in China. In this study, five landfill sludge (LS) treatment technologies using life cycle assessment (LCA) and life cycle cost (LCC) were investigated, i.e., co-incineration in coal-fired power plants (CFPP) and waste incineration power plant (WIPP), co-processing in cement kiln, bricks production, and sintering ceramsite. The LCA results demonstrate that sintering ceramsite outperforms other technologies and LCC results indicate sintering ceramsite also provides the highest economic benefit ($869.94). To further enhance environmental and economic performances of the LS treatment, the substitution of coal with natural gas and biomass can reduce Energy Conservation and Emission Reduction (ECER) index by 74% and 98%, respectively. This substitution can increase economic returns by 24% and 26%, respectively. Furthermore, national-level economic benefit and carbon emission reduction potential of different LS treatment technology alternative scenarios were assessed. Results display that a combination of 50% CFPP, 25% bricks, and 25% ceramsite (biomass) offers the highest economic gain, which is 3.02 times that of 50% CFPP and 50% cement (original case). Conversely, the replacement of 25% brick with 25% cement in the above combination result in the lowest carbon reduction, which is 9.35 times that of the original case.


Subject(s)
Sewage , Waste Disposal Facilities , China , Incineration , Coal
8.
Microbiome ; 12(1): 72, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600530

ABSTRACT

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Subject(s)
Chiroptera , Viruses , Animals , Animals, Wild , Genome, Viral/genetics , Phylogeny , Recombination, Genetic , Rodentia , Uganda/epidemiology
9.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669573

ABSTRACT

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Subject(s)
Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
10.
Mar Environ Res ; 198: 106496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640691

ABSTRACT

The carbonate chemistry in river-dominated marginal seas is highly heterogeneous, and there is ongoing debate regarding the definition of atmospheric CO2 source or sink. On this basis, we investigated the carbonate chemistry and air-sea CO2 fluxes in a hotspot estuarine area: the Changjiang Estuary during winter and summer. The spatial characteristics of the carbonate system were influenced by water mixing of three end-members in winter, including the Changjiang freshwater with low total alkalinity (TA) concentration, the less saline Yellow Sea Surface Water with high TA, and the saline East China Sea (ECS) offshore water with moderate TA. While in summer with increased river discharge, the carbonate system was regulated by simplified two end-member mixing between the Changjiang freshwater and the ECS offshore water. By performing the end-member mixing model on DIC variations in the river plume region, significant biological addition of DIC was found in winter with an estimation of -120 ± 113 µmol kg-1 caused by wintertime organic matter remineralization from terrestrial source. While this biological addition of DIC shifted to DIC removal due to biological production in summer supported by the increased nutrient loading from Changjiang River. The pCO2 dynamics in the river plume and the ECS offshore were both subjected to physical mixing of freshwater and seawater, whether in winter and summer. In the inner estuary without horizontal mixing, the pCO2 dynamics were mainly influenced by biological uptake in winter and temperature in summer. The inner estuary, the river plume, and the ECS offshore were sources of atmospheric CO2, with their contributions varying seasonally. The Changjiang runoff enhanced the inner estuary's role as a CO2 source in summer, while intensive biological uptake reduced the river plume's contribution.


Subject(s)
Carbon Dioxide , Carbonates , Environmental Monitoring , Estuaries , Rivers , Seasons , Seawater , Carbon Dioxide/analysis , Carbonates/analysis , China , Rivers/chemistry , Seawater/chemistry , Water Pollutants, Chemical/analysis , Air Pollutants/analysis
11.
Cancer Cell Int ; 24(1): 97, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443961

ABSTRACT

Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.

12.
Phytomedicine ; 127: 155391, 2024 May.
Article in English | MEDLINE | ID: mdl-38452690

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Subject(s)
Bufanolides , Colorectal Neoplasms , Lung Neoplasms , Animals , Mice , Humans , NF-E2-Related Factor 2/metabolism , Colorectal Neoplasms/pathology , Cell Line, Tumor , Bufanolides/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Metastasis
13.
Nat Ecol Evol ; 8(5): 947-959, 2024 May.
Article in English | MEDLINE | ID: mdl-38519631

ABSTRACT

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.


Subject(s)
Culicidae , Mosquito Vectors , Virome , Animals , Culicidae/virology , China , Mosquito Vectors/virology , Metagenomics , Arboviruses/genetics , Arboviruses/classification , Phylogeny , Biodiversity
14.
Waste Manag ; 174: 203-217, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38061188

ABSTRACT

Medical waste (MW) is exploding due to the COVID-19 pandemic, posing a significant environmental threat, and leading to the urgent requirement for affordable and environmentally friendly MW disposal technologies. Prior research on individual MW disposal plants is region-specific, applying these results to other regions may introduce bias. In this study, major MW disposal technologies in China, i.e., incineration technologies (pyrolysis incineration and rotary kiln incineration), and sterilization technologies (steam sterilization, microwave sterilization, and chemical disinfection) with residue landfill or incineration were analyzed from an industry-level perspective via life cycle assessment (LCA), life cycle costing (LCC) and net present value (NPV) methods. Life cycle inventories and economic cost data for 4-5 typical companies were selected from 128 distinct enterprises and academic sources for each technology. LCA results show that microwave sterilization with residue incineration has the lowest environmental impact, emitting only 480 kg CO2 eq. LCC and NPV analyses indicate that steam sterilization with landfilling is the most economical, yielding revenues of 1,210 CNY/t and breaking even in the first year. Conversely, pyrolysis and rotary kiln incineration break even between the 4th and 5th years. Greenhouse gas emissions from the MW disposal in ten cities with the largest MW production in 2020 increased by 7% over 2019 to 43,800 tons and other pollutants increased by 6% to 12%. Economically, Shanghai exhibits the highest cost-effectiveness, while Nanjing delivers the lowest. It can be observed that the adoption of optimal environmental technologies has resulted in a diminution of greenhouse gas emissions by 279,000 tons and energy conservation of 1.76 billion MJ.


Subject(s)
Greenhouse Gases , Medical Waste Disposal , Medical Waste , Refuse Disposal , Waste Management , Humans , Medical Waste Disposal/methods , Cities , Steam , Cost-Benefit Analysis , Pandemics , China , Incineration/methods , Waste Disposal Facilities , Refuse Disposal/methods , Waste Management/methods
15.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003338

ABSTRACT

Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.


Subject(s)
Chitinases , Neoplasms , Neurodegenerative Diseases , Humans , Inflammation/metabolism , Macrophages/metabolism , Chitinase-3-Like Protein 1
16.
Langmuir ; 39(36): 12817-12825, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37655503

ABSTRACT

As an allotrope of phosphorus and a promising 2D semiconductor, black phosphorus (BP) exhibits in-plane anisotropy along its armchair and zigzag crystal directions, allowing for efficient regulation of near-field radiative heat transfer (NFRHT). In this work, we investigate the NFRHT between two multilayer BP/hBN heterostructures and theoretically demonstrate that thermal regulation can be realized by tuning the electron density and rotation angle of BP. Results show that a larger electron density leads to the coupling of anisotropic surface plasmon polaritons (SPPs) of BP with hyperbolic modes of hBN, and rotation of BP changes the anisotropic characteristic of coupled SPPs on both sides, whereby a regulation ratio of 5.8 can be obtained. We also analyze the effects of period number, hBN layer thickness, and topmost-layer material on the NFRHT. This work may be beneficial for efficient nanoscale thermal management and physical understanding of radiative heat transfer based on anisotropic SPPs.

17.
Environ Sci Pollut Res Int ; 30(48): 106598-106610, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37733201

ABSTRACT

Harmless disposal and reutilization of electroplating sludge (ES) attract growing interests due to the high content of heavy metals, which requires economical-affordable and environmentally friendly processing technologies. Main reutilization alternatives in China, i.e., acid leaching, bioleaching, smelting, ironmaking blast furnace co-processing (IBFC), and cement kiln co-processing (CKC), were evaluated and compared via life cycle assessment (LCA) and life cycle costing (LCC) methods. In addition, the heavy metal recovery potential of these scenarios was also evaluated to focus on the sustainable use of metal resources. LCA results show that acid leaching outperforms other scenarios due to the environmental benefits originating from recovering heavy metals, while smelting exhibits the worst due to high energy consumption. The environmental contribution analysis reveals that the product nickel sulfate has a significant positive impact on acid leaching and bioleaching scenarios, and energy consumption is the key factor for smelting, IBFC, and CKC. LCC results show that bioleaching outperforms others, while CKC performs the worst because only inorganic materials are utilized. Bioleaching has the lowest externality cost while CKC has the highest. The heavy metal recovery assessment indicates that bioleaching exhibits the greatest potential with recovery rates of 99%, 99%, 93%, 96%, and 95% for Cu, Cr, Ni, Zn, and Fe, respectively. In contrast, the target heavy metal recovery rate for both acid leaching and smelting is 93%. Acid leaching and bioleaching scenarios are more advantageous from a comprehensive comparison.


Subject(s)
Metals, Heavy , Sewage , Electroplating , Metals, Heavy/analysis , China
18.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37732272

ABSTRACT

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Using a meta-transcriptomic approach, we analysed the virome of 2,438 individual mosquitos (79 species), spanning ~4000 km along latitudes and longitudes in China. From these data we identified 393 core viral species associated with mosquitos, including seven (putative) arbovirus species. We identified potential species and geographic hotspots of viral richness and arbovirus occurrence, and demonstrated that host phylogeny had a strong impact on the composition of individual mosquito viromes. Our data revealed a large number of viruses shared among mosquito species or genera, expanding our knowledge of host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, possibly facilitated by long-distance mosquito migrations. Together, our results greatly expand the known mosquito virome, linked the viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the ecology of viruses of insect vectors.

19.
Environ Sci Pollut Res Int ; 30(37): 87669-87684, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37430080

ABSTRACT

Food waste (FW) treatment has attracted increasing attention since waste classification occurred in China. Analyzing the environmental and economic impacts of different FW treatment technologies is required. In this study, four FW treatments, i.e., anaerobic digestion, black soldier fly (BSF) bioconversion, composting, and landfill, were evaluated using life cycle assessment (LCA) and life cycle cost (LCC). LCA results show that anaerobic digestion outperforms the other technologies, while LCC results indicate anaerobic digestion has the lowest economic benefits ($5.16) and landfill has the highest ($14.22). Bioconversion has the highest product revenue ($37.98). FW anaerobic digestion followed by treating digestate and waste crude oil was employed to investigate the environmental differences between waste classification and mixed incineration. Digestate gasification and conversion of waste crude oil to biodiesel are found to be environmentally friendly, and waste classification outperforms mixed incineration. Furthermore, we explored national-level environmental emission reduction with anaerobic digestion as the dominant technology via increasing resource utilization rate and applying household FW disposers. Results display that a 60% resource utilization rate decreases the overall environmental impact by 36.68% compared with current situation, and treating household FW separately at the source can further lead to emission reduction. This study provides a reference for selecting FW technologies for countries worldwide from environmental and economic perspectives, as well as a direction of resource utilization for how to reduce environmental emissions from treating the total FW produced by all humanity.


Subject(s)
Refuse Disposal , Waste Management , Animals , Food , China , Life Cycle Stages
20.
Polymers (Basel) ; 15(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37376357

ABSTRACT

In practical application situations, a carbon fiber-reinforced polymer (CFRP) is often subjected to complex dynamic loadings. The effect of the strain rate on mechanical properties is very important for the CFRP design and product development. In this work, static and dynamic tensile properties of CFRP with different stacking sequences and ply orientations were investigated. The results showed that the tensile strengths of CFRP laminates were sensitive to the strain rate, while Young's modulus was independent of the strain rate. Moreover, the strain rate effect was related to the stacking sequences and ply orientations. The experimental results showed that the strain rate effects of the cross-ply laminates and quasi-isotropic-ply laminates were lower than that of the unidirectional-ply laminates. Finally, the failure modes of CFRP laminates were investigated. Failure morphology demonstrated that the differences in strain rate effects among cross-ply laminates, quasi-isotropic-ply laminates, and unidirectional-ply laminates were caused by the mismatch between the fiber and the matrix when the strain rate increased.

SELECTION OF CITATIONS
SEARCH DETAIL