Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 555
Filter
1.
J Eval Clin Pract ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973104

ABSTRACT

RATIONALE: In the era of burgeoning digital technology, healthcare is a challenging transformative change towards virtual and digital platforms. Internet-based healthcare services are emerging as a popular trend within the medical area. User experience (UX) is paramount for the healthcare service, as it significantly influences experience satisfaction and fosters user viscosity. Gaining a profound understanding of users' demands and crafting services that align with their expectations is essential. METHODS: Consequently, exploring an effective design approach for the digital healthcare service that prioritizes UX along with utilizing a comprehensive evaluation methodology to handle UX data, is of profound importance. This study introduces a design methodology for Internet-based healthcare products grounded in the UX and mental (UX-M) model. Aiming to refine the Internet-based healthcare product design by integrating insights from the experience data, it employs the Delphi-ANP and the fuzzy comprehensive evaluation to determine evaluation indexes and conduct experiential assessments. RESULTS: The UX evaluation results of existing schemes are compared with the proposed design scheme of the intelligent guidance and internet hospital. The findings indicate that the UX evaluation of Internet-based medical services with the proposed method outperforms the existing schemes. CONCLUSIONS: On the one hand, UX research of Internet-based healthcare products can significantly enhance service satisfaction for patients utilizing online medical treatments. On the other hand, the analysis of experience-based evaluation empowers designers to refine and improve UX design of Internet-based medical services. Such research endeavors are critical for enhancing the overall quality of service offerings and elevating user satisfaction in the digital healthcare landscape.

2.
Cell Prolif ; : e13648, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987866

ABSTRACT

A specialised microenvironment, termed niche, provides extrinsic signals for the maintenance of residential stem cells. However, how residential stem cells maintain niche homeostasis and whether stromal niche cells could convert their fate into stem cells to replenish lost stem cells upon systemic stem cell loss remain largely unknown. Here, through systemic identification of JAK/STAT downstream targets in adult Drosophila testis, we show that Escargot (Esg), a member of the Snail family of transcriptional factors, is a putative JAK/STAT downstream target. esg is intrinsically required in cyst stem cells (CySCs) but not in germline stem cells (GSCs). esg depletion in CySCs results in CySC loss due to differentiation and non-cell autonomous GSC loss. Interestingly, hub cells are gradually lost by delaminating from the hub and converting into CySCs in esg-defective testes. Mechanistically, esg directly represses the expression of socs36E, the well-known downstream target and negative regulator of JAK/STAT signalling. Finally, further depletion of socs36E completely rescues the defects observed in esg-defective testes. Collectively, JAK/STAT target Esg suppresses SOCS36E to maintain CySC fate and repress niche cell conversion. Thus, our work uncovers a regulatory loop between JAK/STAT signalling and its downstream targets in controlling testicular niche homeostasis under physiological conditions.

4.
Nutrients ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999767

ABSTRACT

(1) Background: The benefits of weight management are widely recognized, and prolonged fasting duration has become a common method for weight control. The suitability of time-restricted eating (TRE) for elderly individuals remains controversial. This study aims to examine the correlation between fasting duration and mortality within a nationally representative cohort of elderly individuals in the United States. (2) Methods: Data were extracted from a prospective cohort study conducted as part of the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Participants aged over 60 with complete data on dietary intake and mortality follow-up information were included. Fasting duration was assessed using two 24 h dietary recalls. All the participants were categorized into fasting duration quartiles. Mortality outcomes were ascertained through the National Death Index. Cox proportional hazards regression models were utilized to analyze the association between fasting duration and mortality. (3) Results: The final analysis included 10,561 elderly participants (mean age 69.89, 45.58% male). Individuals with the longest fasting duration (over 12.38 h) had a significantly higher risk of CVD mortality compared to those with a normal fasting duration (10.58-12.38 h). This elevated CVD mortality risk was particularly pronounced in males, individuals over 70 years old, and non-shift workers. A non-linear relationship was observed between fasting duration and all-cause mortality and CVD mortality. (4) Conclusions: Prolonged fasting periods are associated with a higher risk of CVD mortality in the elderly population, although this correlation is not evident for all-cause, cancer, or other-cause mortality. A fasting duration of 11.49 h correlates with the lowest mortality risk. Additionally, elderly individuals with the shortest fasting duration exhibit elevated hazard ratios for both cancer and other-cause mortality. As with any health intervention, clinicians should exercise caution when recommending a fasting regimen that is personalized to the health condition of people who are older. Further research through randomized controlled trials should be conducted to comprehensively investigate the impact of TRE on mortality.


Subject(s)
Fasting , Nutrition Surveys , Humans , Male , Female , Aged , Prospective Studies , United States/epidemiology , Time Factors , Cardiovascular Diseases/mortality , Risk Factors , Proportional Hazards Models , Middle Aged , Mortality , Aged, 80 and over , Cause of Death
5.
Cardiovasc Diagn Ther ; 14(3): 388-401, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975003

ABSTRACT

Background: Previous studies have suggested that adequate myocardial reperfusion after percutaneous coronary intervention (PCI) can improve the inhomogeneity of myocardial repolarization. However, it remains unclear whether no-reflow (NR) following emergency PCI involves disadvantages related to ventricular repolarization indices. The present study aimed to determine the effect of NR on QT dispersion (QTd) in patients with ST-segment elevation myocardial infarction (STEMI) and to evaluate the prognostic value of the relative reduction of QTd on ventricular arrhythmia events (VAEs). Methods: A prospective case-control study was conducted. According to the inclusion criteria, 275 patients with STEMI who underwent primary PCI treatment at the First People's Hospital of Anqing affiliated to Anhui Medical University from January 2020 to May 2023 were enrolled. According to whether NR occurred during PCI, these patients were divided into two groups: an NR group and a non-NR group. Subsequently, the QT intervals were measured before and at 12 hours after PCI. Afterward, the QTd, corrected QTd (QTcd), and the relative reduction of QTd and QTcd 12 hours pre- and postprocedure (ΔQTd-R and ΔQTcd-R, respectively) were calculated. Finally, multivariable logistic regression analysis was performed to predict the risk of VAE occurrence. Results: In the non-NR group, there was a significant decrease from baseline in postprocedure QTd (48±17 vs. 73±22 ms; P=0.009) and QTcd (54±19 vs. 80±23 ms; P=0.01); in contrast, the NR group showed no significant difference in QTd (64±20 vs. 75±23 ms; P=0.58) or QTd (70±22 vs. 82±26 ms; P=0.45). Furthermore, the ΔQTd-R and ΔQTcd-R were both lower in the NR group than in the non-NR group (P<0.05); however, the rate of VAEs was higher in the NR group than in the non-NR group (15.2% vs. 6.2%; P=0.02). The multivariable logistic regression analysis results revealed that each increase of 12% in ΔQTcd-R was an independent predictor of VAEs (odds ratio: 0.547; 95% confidence interval: 0.228-0.976). Conclusions: The NR phenomenon following primary PCI in patients with STEMI leads to the defective recovery of QTd and QTcd. Furthermore, ΔQTcd-R can be viewed as an effective indicator for evaluating the myocardial repolarization inhomogeneity, and short-term clinical outcomes.

6.
Expert Opin Ther Pat ; : 1-14, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979973

ABSTRACT

INTRODUCTION: Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED: This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION: Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.

7.
J Environ Manage ; 366: 121655, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981271

ABSTRACT

Climate change is threatening fragile alpine ecosystems and their resident ungulates, particularly the wild yak (Bos mutus) that inhabits alpine areas between the tree line and glaciers on the Tibetan Plateau. Although wild yaks tend to shift habitats in response to changes in climatic factors, the precise impacts of climate change on their habitat distribution and climate refugia remain unclear. Based on over 1000 occurrence records, the maximum entropy (MaxEnt) algorithm was applied to simulate habitat ranges in the last glacial maximum (LGM), Mid-Holocene, current stage, and three greenhouse gas emission scenarios in 2070. Three habitat patches were identified as climate refugia for wild yaks that have persisted from the LGM to the present and are projected to persist until 2070. These stable areas account for approximately 64% of the current wild yak habitat extent and are sufficiently large to support viable populations. The long-term persistence of these climate refugia areas is primarily attributed to the unique alpine environmental features of the Tibetan Plateau, where relatively stable arid or semi-arid climates are maintained, and a wide range of forage resource supplies are available. However, habitat loss by 2070 caused by insufficient protection is predicted to lead to severe fragmentation in the southeastern and northwestern Kunlun, Hengduan, central-western Qilian, and southern Tanggula-northern Himalaya Mountains. Habitat disturbance has also been caused by increasing anthropogenic effects in the southern Tanggula and northern Himalaya Mountains. We suggest that sufficient protection, transboundary cooperation, and community involvement are required to improve wild yak conservation efforts. Our combined modeling method (MaxEnt-Zonation-Linkage Mapper-FRAGSTAT) can be utilized to identify priority areas and linkages between habitat patches while assessing the conservation efficiency of protected areas and analyzing the coupled relationship between climate change and anthropogenic impacts on the habitat distribution of endangered species.

8.
Plant J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924284

ABSTRACT

Verticillium dahliae, a soil-borne fungal pathogen, compromises host innate immunity by secreting a plethora of effectors, thereby facilitating host colonization and causing substantial yield and quality losses. The mechanisms underlying the modulation of cotton immunity by V. dahliae effectors are predominantly unexplored. In this study, we identified that the V. dahliae effector Vd6317 inhibits plant cell death triggered by Vd424Y and enhances PVX viral infection in Nicotiana benthamiana. Attenuation of Vd6317 significantly decreased the virulence of V. dahliae, whereas ectopic expression of Vd6317 in Arabidopsis and cotton enhanced susceptibility to V. dahliae infection, underscoring Vd6317's critical role in pathogenicity. We observed that Vd6317 targeted the Arabidopsis immune regulator AtNAC53, thereby impeding its transcriptional activity on the defense-associated gene AtUGT74E2. Arabidopsis nac53 and ugt74e2 mutants exhibited heightened sensitivity to V. dahliae compared to wild-type plants. A mutation at the conserved residue 193L of Vd6317 abrogated its interaction with AtNAC53 and reduced the virulence of V. dahliae, which was partially attributable to a reduction in Vd6317 protein stability. Our findings unveil a hitherto unrecognized regulatory mechanism by which the V. dahliae effector Vd6317 directly inhibits the plant transcription factor AtNAC53 activity to suppress the expression of AtUGT74E2 and plant defense.

9.
Mol Med ; 30(1): 82, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862918

ABSTRACT

BACKGROUND: Programmed cell death is an important mechanism for the development of hepatic ischemia and reperfusion (IR) injury, and multiple novel forms of programmed cell death are involved in the pathological process of hepatic IR. ERRFI1 is involved in the regulation of cell apoptosis in myocardial IR. However, the function of ERRFI1 in hepatic IR injury and its modulation of programmed cell death remain largely unknown. METHODS: Here, we performed functional and molecular mechanism studies in hepatocyte-specific knockout mice and ERRFI1-silenced hepatocytes to investigate the significance of ERRFI1 in hepatic IR injury. The histological severity of livers, enzyme activities, hepatocyte apoptosis and ferroptosis were determined. RESULTS: ERRFI1 expression increased in liver tissues from mice with IR injury and hepatocytes under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Hepatocyte-specific ERRFI1 knockout alleviated IR-induced liver injury in mice by reducing cell apoptosis and ferroptosis. ERRFI1 knockdown reduced apoptotic and ferroptotic hepatocytes induced by OGD/R. Mechanistically, ERRFI1 interacted with GRB2 to maintain its stability by hindering its proteasomal degradation. Overexpression of GRB2 abrogated the effects of ERRFI1 silencing on hepatocyte apoptosis and ferroptosis. CONCLUSIONS: Our results revealed that the ERRFI1-GRB2 interaction and GRB2 stability are essential for ERRFI1-regulated hepatic IR injury, indicating that inhibition of ERRFI1 or blockade of the ERRFI1-GRB2 interaction may be potential therapeutic strategies in response to hepatic IR injury.


Subject(s)
Apoptosis , Ferroptosis , GRB2 Adaptor Protein , Hepatocytes , Mice, Knockout , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/genetics , Disease Models, Animal , Ferroptosis/genetics , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/genetics , Hepatocytes/metabolism , Liver/metabolism , Liver/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics
10.
ACS Chem Biol ; 19(6): 1387-1396, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38843873

ABSTRACT

Chromosome segregation is an essential cellular process that has the potential to yield numerous targets for drug development. This pathway is presently underutilized partially due to the difficulties in the development of robust reporter assays suitable for high throughput screening. In bacteria, chromosome segregation is mediated by two partially redundant systems, condensins and ParABS. Based on the synthetic lethality of the two systems, we developed an assay suitable for screening and then screened a library of fungal extracts for potential inhibitors of the ParABS pathway, as judged by their enhanced activity on condensin-deficient cells. We found such activity in extracts of Humicola sp. Fractionation of the extract led to the discovery of four new analogues of sterigmatocystin, one of which, 4-hydroxy-sterigmatocystin (4HS), displayed antibacterial activity. 4HS induced the phenotype typical for parAB mutants including defects in chromosome segregation and cell division. Specifically, bacteria exposed to 4HS produced anucleate cells and were impaired in the assembly of the FtsZ ring. Moreover, 4HS binds to purified ParB in a ParS-modulated manner and inhibits its ParS-dependent CTPase activity. The data describe a small molecule inhibitor of ParB and expand the known spectrum of activities of sterigmatocystin to include bacterial chromosome segregation.


Subject(s)
Anti-Bacterial Agents , Chromosome Segregation , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Chromosome Segregation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Microbial Sensitivity Tests
11.
ChemistryOpen ; : e202400141, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884382

ABSTRACT

Isoguanosine (isoG) is a natural structural isomer of guanosine (G) with significant potential for applications in ionophores, genetics, gel formation, and cancer therapy. However, the cost of commercially available isoG on a gram scale is relatively high. To date, a detailed method for the large-scale preparation of high-purity isoG has not been reported. This study presented a simple and convenient approach for the large-scale synthesis of isoG through the diazotization of 2,6-diaminopurine riboside with sodium nitrite and acetic acid at room temperature. Further, this method could synthesize isoG derivatives (2'-fluoro-isoguanosine (1) and 2'-deoxy-isoguanosine (2)) from 2,6-diaminopurine nucleoside derivatives using diazotization. The structural information of natural and modified nucleosides is crucial for the modification and substitution of DNA/RNA. This study obtained the single-crystal structure of isoG for the first time and analyzed it in detail using microcrystal electron diffraction. The three-dimensional supramolecular structure of isoG adopted similarly base-pair motifs from π-π stacking interaction of diverse layers, intramolecular hydrogen bonding, and distinct hydrogen bonding interactions from sugar residues. This study has contributed to further isoG modification and its applications in medicinal chemistry and materials.

12.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893473

ABSTRACT

In this research, SCAPS-1D simulation software (Version: 3.3.10) was employed to enhance the efficiency of CsSnX3 (X = Cl, Br, I) all-inorganic perovskite solar cells. By fine-tuning essential parameters like the work function of the conductive glass, the back contact point, defect density, and the thickness of the light absorption layer, we effectively simulated the optimal performance of CsSnX3 (X = Cl, Br, I) all-inorganic perovskite solar cells under identical conditions. The effects of different X-site elements on the overall performance of the device were also explored. The theoretical photoelectric conversion efficiency of the device gradually increases with the successive substitution of halogen elements (Cl, Br, I), reaching 6.09%, 17.02%, and 26.74%, respectively. This trend is primarily attributed to the increasing size of the halogen atoms, which leads to better light absorption and charge transport properties, with iodine (I) yielding the highest theoretical conversion efficiency. These findings suggest that optimizing the halogen element in CsSnX3 can significantly enhance device performance, providing valuable theoretical guidance for the development of high-efficiency all-inorganic perovskite solar cells.

13.
Front Oncol ; 14: 1288820, 2024.
Article in English | MEDLINE | ID: mdl-38841168

ABSTRACT

The oncogenesis and development of glioblastoma multiforme have been linked to glycosylation modifications, which are common post-translational protein modifications. Abnormal glycosyltransferase development leads to irregular glycosylation patterns, which hold clinical significance for GB prognosis. By utilizing both single-cell and bulk data, we developed a scoring system to assess glycosylation levels in GB. Moreover, a glycosylation-based signature was created to predict GB outcomes and therapy responsiveness. The study led to the development of an glyco-model incorporating nine key genes. This risk assessment tool effectively stratified GB patients into two distinct groups. Extensive validation through ROC analysis, RMST, and Kaplan-Meier (KM) survival analysis emphasized the model's robust predictive capabilities. Additionally, a nomogram was constructed to predict survival rates at specific time intervals. The research revealed substantial disparities in immune cell infiltration between low-risk and high-risk groups, characterized by differences in immune cell abundance and elevated immune scores. Notably, the glyco-model predicted diverse responses to immune checkpoint inhibitors and drug therapies, with high-risk groups exhibiting a preference for immune checkpoint inhibitors and demonstrated superior responses to drug treatments. Furthermore, the study identified two potential drug targets and utilized Connectivity Map analysis to pinpoint promising therapeutic agents. Clofarabine and YM155 were identified as potent candidates for the treatment of high-risk GB. Our well-crafted glyco-model effectively discriminates patients by calculating the risk score, accurately predicting GB outcomes, and significantly enhancing prognostic assessment while identifying novel immunotherapeutic and chemotherapeutic strategies for GB treatment.

14.
J Invest Dermatol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879155

ABSTRACT

Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy owing to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from patients with AD. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and ROS production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.

15.
Genes (Basel) ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927631

ABSTRACT

Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to its relatively strong tolerance to salt. This characteristic renders it a valuable subject for investigating the molecular mechanisms underlying plant salt tolerance and for identifying genes that confer salt tolerance. In this study, focus was placed on examining a salt-tolerant variety, E991, and a salt-sensitive variety, ZM24. A combined analysis of transcriptomic data from these cotton varieties led to the identification of potential salt stress-responsive genes within the glutathione S-transferase (GST) family. These versatile enzyme proteins, prevalent in animals, plants, and microorganisms, were demonstrated to be involved in various abiotic stress responses. Our findings indicate that suppressing GhGSTF9 in cotton led to a notably salt-sensitive phenotype, whereas heterologous overexpression in Arabidopsis plants decreases the accumulation of reactive oxygen species under salt stress, thereby enhancing salt stress tolerance. This suggests that GhGSTF9 serves as a positive regulator in cotton's response to salt stress. These results offer new target genes for developing salt-tolerant cotton varieties.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Arabidopsis/genetics , Gossypium/genetics , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Reactive Oxygen Species/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Stress, Physiological/genetics , Salt-Tolerant Plants/genetics
16.
Chemistry ; : e202401762, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888454

ABSTRACT

Force-related discoloration materials are highly valuable because of their characteristics of visualization, easy operation, and environment friendliness. Most force-related discoloration materials focus on polymers and depend on bond scission, which leads to insensitivity and unrecoverable. Small-molecule systems based on well-defined molecular structures and simple composition with high sensitivity would exhibit considerable mechanochromic potential. However, to date, researches about force-related discoloration materials based on small molecule solution remain limited and are rarely reported. In this study, we developed a repeatable and instantaneous discoloration small molecule solution system by simple one-pot synthesis method. It exhibited an instantaneous chromic change from yellowish to dark green under shaking and reverting back to yellow within 1 minute after removal of the shaking. Experimental results confirmed that the discoloration mechanism is attributed to the oscillation accelerating the production of unstable ortho-OH phenoxyl radical. The newly developed shaking-induced discoloration small molecule system (SDSMS) promises in field of mechanical force sensing and optical encryption.

17.
Cancer Lett ; 594: 216962, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38768680

ABSTRACT

PA28γ overexpression is aberrant and accompanied by poor patient prognosis in various cancers, the precise regulatory mechanism of this crucial gene in the tumor microenvironment remains incompletely understood. In this study, using oral squamous cell carcinoma as a model, we demonstrated that PA28γ exhibits high expression in cancer-associated fibroblasts (CAFs), and its expression significantly correlates with the severity of clinical indicators of malignancy. Remarkably, we found that elevated levels of secreted IGF2 from PA28γ+ CAFs can enhance stemness maintenance and promote tumor cell aggressiveness through the activation of the MAPK/AKT pathway in a paracrine manner. Mechanistically, PA28γ upregulates IGF2 expression by stabilizing the E2F3 protein, a transcription factor of IGF2. Further mechanistic insights reveal that HDAC1 predominantly mediates the deacetylation and subsequent ubiquitination and degradation of E2F3. Notably, PA28γ interacts with HDAC1 and accelerates its degradation via a 20S proteasome-dependent pathway. Additionally, PA28γ+ CAFs exert an impact on the tumor immune microenvironment by secreting IGF2. Excitingly, our study suggests that targeting PA28γ+ CAFs or secreted IGF2 could increase the efficacy of PD-L1 therapy. Thus, our findings reveal the pivotal role of PA28γ in cell interactions in the tumor microenvironment and propose novel strategies for augmenting the effectiveness of immune checkpoint blockade in oral squamous cell carcinoma.


Subject(s)
Cancer-Associated Fibroblasts , E2F3 Transcription Factor , Histone Deacetylase 1 , Insulin-Like Growth Factor II , Mouth Neoplasms , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , E2F3 Transcription Factor/metabolism , E2F3 Transcription Factor/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Cell Line, Tumor , Animals , Mice , Disease Progression , Gene Expression Regulation, Neoplastic , Male , Female
18.
Antibiotics (Basel) ; 13(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786187

ABSTRACT

Actinomycetes have long been recognized as important sources of clinical antibiotics. However, the exploration of rare actinomycetes, despite their potential for producing bioactive molecules, has remained relatively limited compared to the extensively studied Streptomyces genus. The extensive investigation of Streptomyces species and their natural products has led to a diminished probability of discovering novel bioactive compounds from this group. Consequently, our research focus has shifted towards less explored actinomycetes, beyond Streptomyces, with particular emphasis on Kitasatospora setae (K. setae). The genome of K. setae was annotated and analyzed through whole-genome sequencing using multiple bio-informatics tools, revealing an 8.6 Mbp genome with a 74.42% G + C content. AntiSMASH analysis identified 40 putative biosynthetic gene clusters (BGCs), approximately half of which were recessive and unknown. Additionally, metabolomic mining utilizing mass spectrometry demonstrated the potential for this rare actinomycete to generate numerous bioactive compounds such as glycosides and macrolides, with bafilomycin being the major compound produced. Collectively, genomics- and metabolomics-based techniques confirmed K. setae's potential as a bioactive secondary metabolite producer that is worthy of further exploration.

19.
Vaccine ; 42(16): 3564-3571, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38692955

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) is a leading cause of morbidity and mortality in young infants worldwide. This study aimed to investigate candidate GBS vaccine targets, virulence factors, and antimicrobial resistance determinants. METHODS: We used whole-genome sequencing to characterize invasive GBS isolates from infants < 3 months of age obtained from a multicenter population-based study conducted from 2015 to 2021 in China. RESULTS: Overall, seven serotypes were detected from 278 GBS isolates, four (Ia, Ib, III, V) of which accounted for 97.8 %. We detected 30 sequence types (including 10 novel types) that were grouped into six clonal complexes (CCs: CC1, CC10, CC17, CC19, CC23 and CC651); three novel ST groups in CC17 were detected, and the rate of CC17, considered a hyperinvasive neonatal clone complex, was attached to 40.6 % (113/278). A total of 98.9 % (275/278) of isolates harbored at least one alpha-like protein gene. All GBS isolates contained at least one of three pilus backbone determinants and the pilus types PI-2b and PI-1 + PI-2a accounted for 79.8 % of the isolates. The 112 serotype III/CC17 GBS isolates were all positive for hvgA. Most of the isolates (75.2 %) were positive for serine-rich repeat glycoprotein determinants (srr1or srr2). Almost all isolates possessed cfb (99.6 %), c1IE (100 %), lmb (95.3 %) or pavA (100 %) gene. Seventy-seven percent of isolates harboured more than three antimicrobial resistance genes with 28.4 % (79/278) gyrA quinoloneresistancedeterminants mutation, 83.8 % (233/278) carrying tet cluster genes and 77.3 % (215/278) carrying erm genes which mediated fluoroquinolone, tetracycline and clindamycin resistance, respectively." CONCLUSIONS: The findings from this large whole-genome sequence of GBS isolates establish important baseline data required for further surveillance and evaluating the impact of future vaccine candidates.


Subject(s)
Streptococcal Infections , Streptococcal Vaccines , Streptococcus agalactiae , Virulence Factors , Whole Genome Sequencing , Humans , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/immunology , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/classification , Whole Genome Sequencing/methods , Virulence Factors/genetics , Infant , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Streptococcal Infections/prevention & control , Streptococcal Vaccines/immunology , Infant, Newborn , China/epidemiology , Female , Serogroup , Male , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Anti-Bacterial Agents/pharmacology
20.
Appl Spectrosc ; : 37028241253860, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767085

ABSTRACT

Current label-free surface-enhanced Raman spectroscopy (SERS) assay for the detection and analysis of organophosphorus pesticides has achieved initial success, but the application still faces constraints of substrate portability and specificity. To this end, this paper demonstrates a method for portable, rapid, and specific detection of low concentrations of fenthion pesticides based on a solid substrate of gold nanoparticle monolayers combined with molecularly imprinted polymers (MIPs). The nano-monolayers were transferred to the surface of mercapto-silicon wafers by interfacial self-assembly technique to form a stable connection with S-Au bonds and, at the same time, prevent nanoparticles from dropping off during the surfactant removal process. Then, the fenthion MIPs were directly generated on the surface of the monolayer film by spin-coating with a pre-polymerization solution and ultraviolet-induced polymerization. Tests showed that the molecular imprint was able to accurately bind to fenthion, but not other molecules, in a mixture of structural analogs, achieving a low concentration detection of 10-8 mol/L. The composite substrate maintained a signal uniformity of a relative standard deviation (RSD) = 7.05% and a batch-to-batch reproducibility of RSD = 10.40%, making it a potential pathway for the extended application of SERS technology.

SELECTION OF CITATIONS
SEARCH DETAIL