Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Curr Biol ; 34(15): 3429-3438.e4, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39047736

ABSTRACT

Rice paddy has been the main source of anthropogenic methane (CH4) emissions, with significant variations among rice varieties. 2-Acetyl-1-pyrroline (2-AP) is the key component of the pleasant aroma in fragrant rice. Here, we show that fragrant rice is metabolically active in nitrogen assimilation and exhibits high levels of 2-AP and that CH4 fluxes at the booting stage and cumulative emissions are 25.5% and 14.8% lower, respectively, in fragrant rice paddies compared with nonfragrant rice paddies. Three precursors involved in 2-AP synthesis-proline, glutamic acid, and ornithine-are identified as crucial nitrogen compounds that significantly promote CH4 oxidation in the rhizosphere. Augmenting 2-AP synthesis, either through foliar spraying or by utilizing CRISPR-Cas9 technology to generate knockout lines of BETAINE ALDEHYDE DEHYDROGENASE 2 gene, effectively enhances CH4 oxidation and reduces CH4 fluxes. Our findings reveal that the 2-AP metabolic pathway coordinates the carbon/nitrogen cycle to improve nitrogen assimilation along with high 2-AP levels and mitigate CH4 emissions in paddy ecosystems.


Subject(s)
Methane , Nitrogen , Oryza , Pyrroles , Oryza/metabolism , Oryza/genetics , Methane/metabolism , Nitrogen/metabolism , Pyrroles/metabolism
2.
Mol Plant Pathol ; 25(3): e13444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481338

ABSTRACT

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism of plant pathogens rapidly adapting to the dynamic host iron environments to assimilate iron for invasion and colonization remains largely unexplored. Here, we found that the GATA transcription factor SreC in Curvularia lunata is required for virulence and adaption to the host iron excess environment. SreC directly binds to the ATGWGATAW element in an iron-dependent manner to regulate the switch between different iron assimilation pathways, conferring adaption to host iron environments in different trophic stages of C. lunata. SreC also regulates the transition of trophic stages and developmental processes in C. lunata. SreC-dependent adaption to host iron environments is essential to the infectious growth and survival of C. lunata. We also demonstrate that CgSreA (a SreC orthologue) plays a similar role in Colletotrichum graminicola. We conclude that Sre mediates adaption to the host iron environment during infection, and the function is conserved in hemibiotrophic fungi.


Subject(s)
Curvularia , Fungal Proteins , Iron , Iron/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence
4.
J Microbiol Methods ; 212: 106812, 2023 09.
Article in English | MEDLINE | ID: mdl-37625551

ABSTRACT

Colletotrichum graminicola, a hemibiotrophic pathogenic fungus, is the causal agent of anthracnose of maize, which causes significant yield losses worldwide, especially in warm and humid maize production regions. An efficient targeted genes knockout protocol is crucial to explore molecular mechanisms of fungal virulence to the host. In this study, we established a gene knockout transformation system by employing Agrobacterium tumefaciens-mediated transformation to knockout genes in M 1.001 strain of C. graminicola. The conidia germination status, induction medium type, and ratio of Agrobacterium cell and conidia suspension were optimized for the knockout of CgBRN1(OR352905), a gene relating to the fungal melanin biosynthesis pathway. Additionally, CgPKS18 (OR352906) and CgCDC25 (OR352903) were knocked out to test the applicability of the gene knockout transformation system. In this established system, transformation efficiency was 176 transformants per 1 × 105 conidia and the homologous recombination efficiency was 53.3 to 75%. Furthermore, disease index, lesion number and lesion size caused by the three above-mentioned mutant strains were found to be reduced significantly compared to the wild-type strain, which indicated reduction in fungal virulence due to the lack of those genes.


Subject(s)
Agrobacterium tumefaciens , Colletotrichum , Agrobacterium tumefaciens/genetics , Zea mays , Gene Knockout Techniques , Colletotrichum/genetics , Spores, Fungal/genetics
5.
Insect Sci ; 30(6): 1579-1594, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36924440

ABSTRACT

Insect immune-associated phospholipase A2 (PLA2 ) is an important target of pathogen invasion. Melanization, an effective defense response, has significant correlations with other immune responses to coordinate immune attack against invaders. However, the effect of PLA2 on melanization has not yet been reported in insects or other arthropods. In this work, we cloned a PLA2 gene (BmsPLA2 ), and its protein had characteristic features of secreted PLA2 (sPLA2 ). After injection of bacteria, BmsPLA2 expression and sPLA2 activity in hemolymph significantly increased. BmsPLA2 fluorescence was transferred from the cytoplasm to the cell membranes of circulating hemocytes. These results indicated that BmsPLA2 was related to hemolymph immunity in silkworms. Interestingly, reducing BmsPLA2 by RNA interference decreased melanosis (melanistic hemocytes) levels in vivo and in vitro, while BmsPLA2 overexpression had the opposite effect. The larval survival and melanization rate in the hemocoel both slowed depending on the PLA2 inhibitor dosage. These results demonstrated that BmsPLA2 plays a role in melanization during the immune process of silkworms. Surprisingly, the level of BmDDC matched the degree of melanization in various observations. BmDDC expression showed a significant increase, with the peak occurring later than that of BmsPLA2 after injection of bacteria, implying that BmsPLA2 was activated prior to BmDDC. Moreover, the alteration of BmsPLA2 by RNA interference or overexpression led to altered BmDDC levels. These results suggested that BmsPLA2 regulates the melanization response in silkworms through BmDDC. Our study proposes a new regulatory mechanism of the melanization response and new directions for understanding the complex immune networks of insects.


Subject(s)
Bombyx , Phospholipases A2, Secretory , Animals , Bombyx/genetics , Bombyx/metabolism , RNA Interference , Phospholipases A2, Secretory/genetics , Phospholipases A2, Secretory/metabolism , Bacteria/metabolism , Larva/metabolism , Insect Proteins/metabolism
6.
Biosci Biotechnol Biochem ; 86(9): 1192-1199, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35810001

ABSTRACT

We developed a new ochratoxin A (OTA) aptamer biosensor to promptly detect OTA in food. Mesoporous silica nanoparticles were used as carriers, and aptamers were used as recognition probes and gating molecules. The fluorescent dye rhodamine 6G was loaded into mesoporous silica, and through electrostatic contact, the OTA aptamer was adsorbed on amino-modified mesoporous silica. The fluorescent dye released from the mesopore in the presence of OTA because of the conformational change induced in the aptamer by the target. The amount of ochratoxin was determined by measuring the fluorescence intensity. Our findings revealed a positive relationship between the fluorescence intensity and OTA concentration, with a limit of detection of 0.28 ng mL-1, and the detection range was 0.05-200 ng mL-1. The recovery rate was 80.7%-110.8% in real samples. The proposed approach is suitable for the quantification of other toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Fluorescent Dyes , Food Contamination/analysis , Limit of Detection , Ochratoxins/analysis , Silicon Dioxide
7.
Dalton Trans ; 51(6): 2219-2225, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35040856

ABSTRACT

CaTiO3 is considered to be one of the most promising catalysts for the degradation of organic pollutants, but its application is limited by the wide band gap and low catalytic activity. Element doping is an effective strategy to solve these problems. Herein, a novel CaTiO3 co-doped with Ag and Co (Ca1-xAgxTi1-yCoyO3) was synthesized by combining co-precipitation and the microwave hydrothermal method for the first time. The crystal structure, microstructure and light absorption of the material were systematically investigated. The results showed that Ca1-xAgxTi1-yCoyO3 had higher light absorption than pure CaTiO3, and the band gap was reduced to 2.78 eV. First-principles calculations indicated that Ag-Ca and Co-Ti tended to form donor-acceptor defect pairs in the doping process. These defect states not only enhanced the adsorption properties, but also could be used as carrier traps to optimize the dielectric properties of CaTiO3. In the photoelectrocatalytic system, with 0.01 g of catalyst, 98% of methylene blue in 100 mL solution (10 mg L-1) was degraded in 150 min. In addition, Ca1-xAgxTi1-yCoyO3 showed strong stability and excellent recyclability. The double ion co-doping technology will provide an effective strategy for improving the catalytic activity of traditional wide-band gap semiconductors.

8.
J Nanosci Nanotechnol ; 21(2): 1397-1402, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33183490

ABSTRACT

The myocardial I/R damage is very complicated. Apoptosis is considered to its a critical mechanism. During the cardiac muscle I/R process, oxygen-free radicals play a pivotal role. Arrhythmias, as well as enlargement of the area of myocardial infarction after cardiac muscle I/R process, are caused by adequate blast generated O2- ion free radicals. During the ischemia-reperfusion process, a large amount of O2- ion free radicals destroyed the cell structure, and it undergoes lipid peroxidation with unsaturated fatty acids that contain a large number of phospholipids in the cell membrane, causing membrane proteins such as ion channels and enzymes on the cell membrane. The activity of cell is reduced, which affects the function of cell membrane and organelle membrane, destroys its integrity and reduces fluidity.We observed the effects of cerium dioxide nanoparticles on glutathione peroxidase as well as superoxide dismutase, also propionate in myocardial tissue of I/R injury in the mouse. Its effects of malondialdehyde and apoptosis were explored to see its protective effect and to provide more preventive measures for ischemia-reperfusion injury.


Subject(s)
Myocardial Reperfusion Injury , Nanoparticles , Animals , Apoptosis , Ischemia , Mice , Muscle Cells , Myocardial Reperfusion Injury/drug therapy , Myocardium , Nanoparticles/toxicity , Superoxide Dismutase
9.
J Sci Food Agric ; 100(3): 1195-1203, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31721226

ABSTRACT

BACKGROUND: The present study investigated the effect of two-step heat treatments on the structure of grass carp myofibrillar proteins (MPs) and their binding ability for selected aldehydes (hexanal, heptanal, octanal and nonanal). RESULTS: Within 30 min of the first heating step at 40 °C and 5-10 min of the second heating step at 90 °C, the enhancement of the flavor-binding ability was likely explained by the increases in surface hydrophobicity and total sulfhydryl content due to the unfolding of secondary structures of MPs through exposure of hydrophobic amino acids and sulfhydryl groups. Nevertheless, lengthy heating at 90 °C accelerated the aggregation of unfolded MPs and reduced the hydrophobic bonding sites, thus weakening the hydrophobic interactions and decreasing the resultant binding ability of MPs with aldehydes. CONCLUSION: The binding ability of aldehydes to MPs was found to be strongly influenced by changes in protein structure and surface during the two-step heating process. The results provided insight into improving the flavor characteristics of freshwater fish surimi products. © 2019 Society of Chemical Industry.


Subject(s)
Aldehydes/analysis , Fish Products/analysis , Fish Proteins/chemistry , Myofibrils/chemistry , Animals , Carps , Flavoring Agents/chemistry , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary
10.
Plant Dis ; 103(7): 1728-1737, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31107642

ABSTRACT

Curvularia leaf spot (CuLS), caused by Curvularia lunata, is a devasting foliar disease in the maize-growing regions of China. Resistant varieties were widely planted in these regions in response to CuLS. However, over time, C. lunata has gradually adapted to the selective pressure and, in recent years, the incidence of CuLS has increased. To assess the correlation between virulence and genetic diversity, a total of 111 isolates was collected from 15 maize-growing regions located in nine provinces in China. These isolates were evaluated for virulence on maize using nine differential hosts: Shen135, CN165, Mo17, Luyuan92, 78599, Ye478, B73, E28, and Huangzaosi. To evaluate the genetic diversity, 657 polymorphic amplified fragment length polymorphism markers were generated. Results showed that the isolates could be grouped into three pathotypes according to the phenotypic expression of the differential inbred lines. Isolates were clustered into two genetic diversity groups and further divided into subgroups. However, the correlation between virulence and genetic diversity grouping was low. Also, there was a low correlation observed between pathotype and geographic distribution. The ratio of mating type I to mating type II for all isolates was close to 3:4.


Subject(s)
Ascomycota , Plant Diseases , Virulence , Zea mays , Amplified Fragment Length Polymorphism Analysis , Ascomycota/genetics , Ascomycota/pathogenicity , China , Plant Diseases/microbiology , Virulence/genetics , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL