Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.039
Filter
1.
Food Chem ; 461: 140828, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39151347

ABSTRACT

A refined electrochemical aptamer sensing technique using PEI@Ti-MOF@Ti3C2Tx-MXene was developed for the sensitive detection of ZEN in food samples. A titanium-based metal-organic skeleton (NH2-MIL-125) was synthesized in situ using 2-aminoterephthalic acid as the organic ligand and tetrabutyl titanate as the metal center, followed by the simultaneous hybridization of Ti3C2Tx-MXene to synthesize a Ti-MOF@Ti3C2Tx-MXene composite material. These composites were subsequently functionalized with PEI and covalently linked to form a sensing platform on gold electrodes. Integrating a metal-organic framework (MOF) with MXene materials not only improved the electrochemical properties compared to those of individual elements but also decreased the stacking effect and increased the number of binding sites for the aptamer. The limit of detection (LOD) of this sensor was 1.64 fg mL-1. Additionally, the sensor could efficaciously detect ZEN in cornmeal and beer samples, exhibiting outstanding stability, reproducibility, and selectivity. This highlighted its effectiveness in applications in quality supervision and food safety.

2.
AME Case Rep ; 8: 63, 2024.
Article in English | MEDLINE | ID: mdl-39091541

ABSTRACT

Background: Solitary rectal ulcer syndrome (SRUS) is a rare chronic rectal lesion with potential for malignant transformation, although cases of rapid progression to mucinous adenocarcinoma are infrequent. This case report highlights such an instance in a 29-year-old male patient, emphasizing the importance of vigilance among clinicians for detecting canceration in SRUS patients. Case Description: The patient presented with recurrent constipation and anal discomfort, initially diagnosed with SRUS based on colonoscopy and pathological examination. Despite long-term mesalazine treatment, symptoms persisted, and subsequent evaluation revealed the development of mucinous adenocarcinoma within a short period. Surgical resection, combined with adjuvant FOLFOX chemotherapy, effectively controlled cancer progression. Immunohistochemical analysis showed positive expression of MLH1(+), MSH2(+), MSH6(+), PMS2(+), and HER2(+), providing molecular insights into SRUS-associated mucinous adenocarcinoma. Conclusions: This case underscores the need for increased awareness among clinicians regarding the potential for cancerous transformation in SRUS patients. Early detection and intervention are crucial for improving outcomes in SRUS-associated malignancies. Furthermore, this case adds to existing literature by presenting a rare instance of SRUS progressing rapidly to mucinous adenocarcinoma, highlighting the significance of regular monitoring and timely intervention in such cases. Further research is warranted to elucidate underlying mechanisms and risk factors, guiding future clinical practice and treatment strategies.

3.
Mol Nutr Food Res ; : e2400251, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097954

ABSTRACT

Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.

4.
Article in English | MEDLINE | ID: mdl-39099095

ABSTRACT

In the face of escalating global temperatures, the demand for innovative passive cooling technologies that are both low-cost and environmentally sustainable is more critical than ever. However, traditional cooling fabrics face challenges in achieving wearing comfort while maintaining breathability and durability. Herein, a novel fluffy microfibrous fabric utilizing polyolefin-elastomer and polypropylene with embedded zinc oxide nanoparticles is fabricated through melt-blown technology. The results reveal that the prepared samples demonstrate exceptional daytime radiative cooling properties that present a 12.5 °C cooling capacity under 1083 W/m2 solar radiation, highlighted by their ability to reflect up to 90.8% of solar radiation and their significantly enhanced thermal emissivity. Moreover, key findings include that the samples have robust mechanical strength, high elastic performance, and excellent antifouling capabilities, alongside superior cooling performance, which will provide an opportunity to explore the development of cooling garments for outdoor environments and contribute substantially to sustainable cooling solutions.

5.
Anal Methods ; 16(33): 5665-5675, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39113561

ABSTRACT

In this study, an ultrasensitive detection platform for tobramycin (TOB) was developed, featuring a "sandwich" structure guided by AgNCs@PDANSs and Thi-AuNCs@ZnONSs. To address the issue of large background current peak signals in tagless sensors, Thi-AuNCs@ZnONSs composites were synthesized as signal tags. Zinc oxide nanosheets (ZnONSs) served as the loading agent, and AuNCs with the electroactive molecule Thi acted as carriers. Furthermore, AgNPs@PDANSs nanocomposites, possessing excellent electrical conductivity and large specific surface areas, were prepared as substrate materials for the modified electrodes. A "sandwich" structure strategy was also introduced to enhance the accuracy of the electrochemical aptasensor. This strategy, utilizing a dual sequence for target labeling and capture, yielded higher sensitivity and simplified the sensor construction compared to methods employing a single sequence. Under optimal conditions, the detection limit for TOB was established at 1.41 pM, with a detection range of 0.05-5000 nM. The aptasensor was effectively applied in the detection of TOB in tap and lake water, demonstrating outstanding reproducibility, selectivity, and stability. These results may serve as a reference for environmental TOB detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Metal Nanoparticles , Silver , Tobramycin , Water Pollutants, Chemical , Tobramycin/analysis , Tobramycin/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Silver/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/analysis , Biosensing Techniques/methods , Limit of Detection , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Reproducibility of Results , Zinc Oxide/chemistry , Lakes/analysis , Lakes/chemistry
6.
ACS Sens ; 9(8): 3870-3876, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39115965

ABSTRACT

Ion-selective electrodes (ISEs) have widespread use in the fields of clinical and environmental analyses. Tetrahydrofuran (THF) is the most used solvent for the preparation of modern ISEs, equipped with ion-selective membranes (ISMs). Until now, the influence of impurities in THF toward potentiometric instability of ion-selective membrane based ISEs was probably associated with the presence of either residual water or peroxide. To address this issue, most literature recommends redistilling THF prior to use in the preparation of the potentiometric membranes. Current study reveals that the actual THF impurity that is responsible for potential instability in the ISM includes products from the oxidation of THF, which contains the hydroxyl group and possibly carbonyl group with a boiling point of above 200 °C. The density functional theory calculation supported pathway of the chemical reaction of THF oxidation, hence, the chemical structure of the uncertain impurities was predicted. The underlying reason for the deteriorating potential stability of the ISEs is proposed as the significant hydrophilicity of these impurities that affect the partitioning of the ion sensing components in the membrane, thus enhancing the leaching of the membrane components from the membrane phase. This finding explains why redistillation of aged THF is advised.


Subject(s)
Furans , Furans/chemistry , Ion-Selective Electrodes , Oxidation-Reduction , Membranes, Artificial , Potentiometry , Density Functional Theory
7.
Clin Respir J ; 18(8): e70003, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39187469

ABSTRACT

BACKGROUND: Systemic inflammation stands as a pivotal factor tightly interwoven with the progression of COVID-19. This study endeavors to elucidate the significance of three key inflammatory molecules, that is, heparin-binding protein (HBP), interleukin-6 (IL-6), and C-reactive protein (CRP), in assessing the severity and prognostic implications of COVID-19. METHODS: The demographic, clinical, and laboratory data were retrospectively collected from a cohort of 214 adult patients diagnosed with COVID-19. Patients were divided into two groups: nonsevere (n = 93; 43.5%) and severe (n = 121; 56.5%). Additionally, based on their organ function, patients were categorized into nonorgan failure (n = 137) and organ failure (n = 77) groups. The levels of inflammation-related cytokines were then compared among these defined groups. RESULTS: The severe group was characterized by a higher proportion of males, older age, and longer hospital stays compared to nonsevere cases. Additionally, severe cases exhibited a higher prevalence of underlying diseases and organ failure. Statistical analysis revealed significantly elevated levels of HBP, IL-6, and CRP in the severe group. HBP, IL-6, and CRP were identified as independent risk factors for severe COVID-19. Furthermore, a combined assessment of these biomarkers demonstrated superior diagnostic sensitivity (85.10%) and specificity (95.70%) for predicting COVID-19 severity. A positive relationship between elevated HBP, IL-6, and CRP levels and impaired organ function was also observed. The predictive efficiency significantly increased (hazard ratio = 3.631, log-rank p = 0.003) when two or more of them were combinedly used. Notably, elevated levels of HBP, IL-6, and CRP were associated with an increased risk of mortality. CONCLUSIONS: In conclusion, the combined assessment of HBP, IL-6, and CRP offers enhanced accuracy and specificity in predicting the severity, organ failure, and mortality risk associated with COVID-19.


Subject(s)
Biomarkers , C-Reactive Protein , COVID-19 , Interleukin-6 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , Male , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Female , Retrospective Studies , Interleukin-6/blood , Middle Aged , Aged , Biomarkers/blood , Prognosis , SARS-CoV-2 , Adult , Blood Proteins , Carrier Proteins/blood , Predictive Value of Tests , Antimicrobial Cationic Peptides
8.
Org Lett ; 26(32): 6866-6871, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39093330

ABSTRACT

We developed a protocol for the synthesis of highly functionalized 5,6-dihydro-imidazo[1,2-c][1,2,3]triazole derivatives 4-5 (DHITs) from 1-diazonaphthalen-2(1H)-one derivatives with heterocyclic ketene aminals (HKAs). This strategy involved cycloaddition and skeletal rearrangement entailing the heating of a mixture of substrates 1 with HKAs 2-3 and THF without any catalyst. As a result, a series of DHITs 4-5 were produced by cleaving one bond (1 C═N bond) and forming three bonds (1 N-N and 2 C-N bonds) in a single step. This protocol achieved the dual functionalization of diazo building blocks involving both the aromatic nitrogen alkylation reaction to form an ArC-N bond without any metal catalyst and the intermolecular cycloaddition of the N═N bond. These strategies can be used to synthesize functionalized DHITs for combinatorial and parallel syntheses via one-pot reactions without any catalyst.

9.
Psychon Bull Rev ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954157

ABSTRACT

Sensory attenuation refers to the reduction in sensory intensity resulting from self-initiated actions compared to stimuli initiated externally. A classic example is scratching oneself without feeling itchy. This phenomenon extends across various sensory modalities, including visual, auditory, somatosensory, and nociceptive stimuli. The internal forward model proposes that during voluntary actions, an efferent copy of the action command is sent out to predict sensory feedback. This predicted sensory feedback is then compared with the actual sensory feedback, leading to the suppression or reduction of sensory stimuli originating from self-initiated actions. To further elucidate the neural mechanisms underlying sensory attenuation effect, we conducted an extensive meta-analysis of functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies. Utilizing activation likelihood estimation (ALE) analysis, our results revealed significant activations in a prominent cluster encompassing the right superior temporal gyrus (rSTG), right middle temporal gyrus (rMTG), and right insula when comparing external-generated with self-generated conditions. Additionally, significant activation was observed in the right anterior cerebellum when comparing self-generated to external-generated conditions. Further analysis using meta-analytic connectivity modeling (MACM) unveiled distinct brain networks co-activated with the rMTG and right cerebellum, respectively. Based on these findings, we propose that sensory attenuation arises from the suppression of reflexive inputs elicited by self-initiated actions through the internal forward modeling of a cerebellum-centered action prediction network, enabling the "sensory conflict detection" regions to effectively discriminate between inputs resulting from self-induced actions and those originating externally.

10.
Analyst ; 149(17): 4351-4362, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39005217

ABSTRACT

Paper-based microfluidics combined with potentiometric measurement has emerged as an attractive approach for detecting various chemical ionic moieties. Detection of heavy metal ions, using paper substrates as solution sampling and delivery systems remains challenging despite efforts to introduce several physico-chemical paper substrate modifications to stop adsorption of ions onto the paper substrates. This study quantitatively investigates the adsorption of heavy metal ions on the paper substrates during paper-based potentiometric measurements and explains the super-Nernstian response of potentiometric sensors through local depletion of heavy metal ions from the solution. Consequently, based on the investigated ion adsorption, a corrective potential protocol was established for the electrodes coupled with paper-based solution sampling by predicting interference free sensor response from paper-based measurement. Furthermore, the ion adsorption was also recorded for mixed metal ion solutions to understand competitive primary/interfering ions adsorption onto the paper substrates and establish corrective measures to predict interference free sensor response. In this method, no modifications of the paper substrates are necessary before actual potentiometric measurements. The proposed corrective protocol allows prediction of sensor response based on the paper-based solution sampling potentiometric measurement, providing a simple methodological approach based on correction of potential readout of the potentiometric sensor, thus completely resigning from the need of modifying paper substrate for measurements of heavy metal ions.

11.
Environ Pollut ; 360: 124626, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084589

ABSTRACT

Microplastic (MP) contamination in soil severely impairs plant growth. However, mechanisms underlying the effects of MPs on plant nutrient uptake remain largely unknown. In this study, we revealed that NO3- content was significantly decreased in shoots and roots of wheat plants exposed to high concentrations (50-100 mg L-1) of MPs (1 µm and 0.1 µm; type: polystyrene) in the hydroponic solution. Isotope labeling experiments demonstrated that MP exposure led to a significant inhibition of NO3- uptake in wheat roots. Further analysis indicated that the presence of MPs markedly inhibited root growth and caused oxidative damage to the roots. Additionally, superoxide dismutase and peroxidase activities in wheat roots decreased under all MP treatments, whereas catalase and ascorbate peroxidase activities significantly increased under the 100 mg L-1 MP treatment. The transcription levels of most nitrate transporters (NRTs) in roots were significantly downregulated by MP exposure. Furthermore, exposure to MPs distinctly suppressed the activity of nitrate reductase (NR) and nitrite reductase (NiR), as well as the expression levels of their coding genes in wheat shoots. These findings indicate that a decline in root uptake area and root vitality, as well as in the expression of NRTs, NR, and NiR genes caused by MP exposure may have adverse effects on NO3- uptake and assimilation, consequently impairing normal growth of plants.

12.
Nature ; 632(8024): 301-306, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048825

ABSTRACT

Molecule-based selective contacts have become a crucial component to ensure high-efficiency inverted perovskite solar cells1-5. These molecules always consist of a conjugated core with heteroatom substitution to render the desirable carrier-transport capability6-9. So far, the design of successful conjugation cores has been limited to two N-substituted π-conjugated structures, carbazole and triphenylamine, with molecular optimization evolving around their derivatives2,5,10-12. However, further improvement of the device longevity has been hampered by the concomitant limitations of the molecular stability induced by such heteroatom-substituted structures13,14. A more robust molecular contact without sacrificing the electronic properties is in urgent demand, but remains a challenge. Here we report a peri-fused polyaromatic core structure without heteroatom substitution that yields superior carrier transport and selectivity over conventional heteroatom-substituted core structures. This core structure produced a relatively chemically inert and structurally rigid molecular contact, which considerably improved the performance of perovskite solar cells in terms of both efficiency and durability. The champion device showed an efficiency up to 26.1% with greatly improved longevity under different accelerated-ageing tests.

13.
Conscious Cogn ; 123: 103727, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972289

ABSTRACT

The intentional binding effect refers to the phenomenon where the perceived temporal interval between a voluntary action and its sensory consequence is subjectively compressed. Prior research revealed the importance of tactile feedback from the keyboard on this effect. Here we examined the necessity of such tactile feedback by utilizing a touch-free key-press device without haptic feedback, and explored how initial/outcome sensory modalities (visual/auditory/tactile) and their consistency influence the intentional binding effect. Participants estimated three delay lengths (250, 550, or 850 ms) between the initial and outcome stimuli. Results showed that regardless of the combinations of sensory modalities between the initial and the outcome stimuli (i.e., modal consistency), the intentional binding effect was only observed in the 250 ms delay condition. This findings indicate a stable intentional binding effect both within and across sensory modalities, supporting the existence of a shared mechanism underlying the binding effect in touch-free voluntary actions.


Subject(s)
Feedback, Sensory , Intention , Psychomotor Performance , Touch Perception , Humans , Male , Female , Young Adult , Adult , Touch Perception/physiology , Feedback, Sensory/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Time Perception/physiology , Auditory Perception/physiology , Volition/physiology
14.
Regen Biomater ; 11: rbae068, 2024.
Article in English | MEDLINE | ID: mdl-39027360

ABSTRACT

Zirconia abutments and restorations have improved the aesthetic appeal of implant restoration, yet peri-implantitis poses a significant threat to long-term success. The soft tissue surrounding implants is a crucial biological barrier against inflammation and subsequent bone loss. Peri-implantitis, akin to periodontitis, progresses rapidly and causes extensive tissue damage. Variations in tissue structure significantly influence disease progression, particularly the lower vascular density in peri-implant connective tissue, compromising its ability to combat infection and provide essential nutrients. Blood vessels within this tissue are vital for healing, with angiogenesis playing a key role in immune defense and tissue repair. Enhancing peri-implant soft tissue angiogenesis holds promise for tissue integration and inflammation control. Microgroove surfaces have shown potential in guiding vessel growth, but using subtractive technologies to carve microgrooves on zirconia surfaces may compromise mechanical integrity. In this study, we utilized inkjet printing to prepare bioactive silk fibroin microgrooves (SFMG) coating with different sizes on zirconia surfaces. SFMG coating, particularly with 90 µm width and 10 µm depth, effectively directed human umbilical vein endothelial cells (HUVECs) along microgrooves, promoting their proliferation, migration, and tube formation. The expression of vascular endothelial growth factor A and fibroblast growth factor in HUVECs growing on SFMG coating was upregulated. Additionally, the SFMG coating activated the PI3K-AKT pathway and increased glycolytic enzyme gene expression in HUVECs. In conclusion, SFMG coating enhances HUVEC growth and angiogenesis potential by activating the PI3K-AKT pathway and glycolysis, showing promise for improving tissue integration and mitigating inflammation in zirconia abutments and restorations.

15.
Article in English | MEDLINE | ID: mdl-39028591

ABSTRACT

Predicting the gene mutation status in whole slide images (WSI) is crucial for the clinical treatment, cancer management, and research of gliomas. With advancements in CNN and Transformer algorithms, several promising models have been proposed. However, existing studies have paid little attention on fusing multi-magnification information, and the model requires processing all patches from a whole slide image. In this paper, we propose a cross-magnification attention model called CroMAM for predicting the genetic status and survival of gliomas. The CroMAM first utilizes a systematic patch extraction module to sample a subset of representative patches for downstream analysis. Next, the CroMAM applies Swin Transformer to extract local and global features from patches at different magnifications, followed by acquiring high-level features and dependencies among single-magnification patches through the application of a Vision Transformer. Subsequently, the CroMAM exchanges the integrated feature representations of different magnifications and encourage the integrated feature representations to learn the discriminative information from other magnification. Additionally, we design a cross-magnification attention analysis method to examine the effect of cross-magnification attention quantitatively and qualitatively which increases the model's explainability. To validate the performance of the model, we compare the proposed model with other multi-magnification feature fusion models on three tasks in two datasets. Extensive experiments demonstrate that the proposed model achieves state-of-the-art performance in predicting the genetic status and survival of gliomas. The implementation of the CroMAM will be publicly available upon the acceptance of this manuscript at https://github.com/GuoJisen/CroMAM.

16.
Mater Today Bio ; 27: 101158, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39081464

ABSTRACT

The use of zirconia has significantly enhanced the aesthetic outcomes of implant restorations. However, peri-implantitis remains a challenge to long-term functionality of implants. Unlike the perpendicularly arranged collagen fibers in periodontal tissue, those in peri-implant tissue lie parallel to the abutment surface and contain fewer fibroblasts, making them more prone to inflammation. Studies have shown that microgroove structures on implant abutments could improve surrounding soft tissue structure. However, creating precise microgrooves on zirconia without compromising its mechanical integrity is technically challenging. In this study, we applied inkjet printing, an additive manufacturing technique, to create stable silk fibroin microgroove (SFMG) coatings of various dimensions on zirconia substrates. SFMG significantly improved the hydrophilicity of zirconia and showed good physical and chemical stability. The SFMG with 90 µm interval and 10 µm depth was optimal in promoting the proliferation, alignment, and extracellular matrix production of human gingival fibroblasts (HGFs). Moreover, the in vitro results revealed that SFMG stimulated key glycolytic enzyme gene expression in HGFs via the PI3K-AKT-mTOR pathway. Additionally, the in vivo results of histological staining of peri-abutments soft tissue showed that SFMG promoted the vertical alignment of collagen fibers relative to the abutment surface, improving connective tissue sealing around the zirconia abutment. Our results indicated that SFMG on zirconia can enhance HGF proliferation, migration and collagen synthesis by regulating glycolysis though PI3K-AKT-mTor pathway, thereby improving connective tissue sealing.

17.
Plants (Basel) ; 13(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39065492

ABSTRACT

Loquat leaves exhibiting obvious yellowing, blistering, mosaic, leaf upward cupping, crinkle, and leaf narrowing were identified in Panzhihua City, Sichuan Province, China. High-throughput sequencing (HTS) with the ribo-depleted cDNA library was employed to identify the virome in the loquat samples; only tomato mosaic virus (ToMV) and citrus exocortis viroid (CEVd) were identified in the transcriptome data. The complete genome sequence of ToMV and CEVd were obtained from the loquat leaves. The full-length genome of the ToMV-loquat is 6376 nt and comprises four open reading frames (ORFs) encoding 183 kDa protein, RNA-dependent RNA polymerase (RdRp), movement protein (MP), and coat protein (CP), respectively. A pairwise identity analysis showed that the complete sequence of the ToMV-loquat had a nucleotide identity between 98.5 and 99.3% with other ToMV isolates. A phylogenetic analysis indicated that ToMV-loquat was more closely related to ToMV-IFA9 (GenBank No. ON156781). A CEVd sequence with 361 nt in length was amplified based on the HTS contigs, sequence alignment indicated CEVd-loquat had the highest identity with the strain of CEVd-Balad (GenBank No. PP869624), phylogenetic analysis showed that CEVd-loquat was more closely related to CEVd-lettuce (GenBank No. ON993891). This significant discovery marks the first documentation and characterization of ToMV and CEVd infecting loquat plants, shedding light on potential threats to loquat cultivation and providing insights for disease management strategies.

18.
J Environ Sci (China) ; 146: 91-102, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969465

ABSTRACT

In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.


Subject(s)
Filtration , Hydroponics , Nutrients , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Nutrients/analysis , Nutrients/metabolism , Ceramics , Membranes, Artificial , Water Pollutants, Chemical/analysis , Gravitation , Fertilizers
19.
Front Microbiol ; 15: 1389268, 2024.
Article in English | MEDLINE | ID: mdl-38962137

ABSTRACT

The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.

20.
J Cardiothorac Surg ; 19(1): 428, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987798

ABSTRACT

OBJECTIVES: Thoracic surgery is a complex field requiring advanced technical skills and critical decision-making. Surgical education must evolve to equip trainees with proficiency in new techniques and technologies. METHODS: This bibliometric analysis systematically reviewed 113 articles on thoracic surgery skills training published over the past decade, retrieved from databases including Web of Science. Publication trends, citation analysis, author and journal productivity, and keyword frequencies were evaluated. RESULTS: The United States contributed the most publications, led by pioneering institutions. Simulation training progressed from basic to sophisticated modalities and virtual reality emerged with transformative potential. Minimally invasive techniques posed unique learning challenges requiring integrated curricula. CONCLUSION: Ongoing investments in educational research and curriculum innovations are imperative to advance thoracic surgery training through multidisciplinary strategies. This study provides an evidentiary foundation to optimize training and address the complexities of modern thoracic surgery.


Subject(s)
Bibliometrics , Thoracic Surgery , Humans , Clinical Competence , Curriculum , Thoracic Surgery/education , Thoracic Surgical Procedures/education
SELECTION OF CITATIONS
SEARCH DETAIL