Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.796
Filter
1.
Article in English | MEDLINE | ID: mdl-38965043

ABSTRACT

Solid oxide electrolysis cells (SOECs) show significant promise in converting CO2 to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr2Fe1.5Mo0.5O6-δ perovskite to promote its electrochemical performance. The substitution of variable valence V5+ for Mo6+ along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO2 reduction. Notably, the Sr2Fe1.5Mo0.4V0.1O6-δ based symmetrical SOEC achieves a current density of 1.56 A cm-2 at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO2 reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO2 conversion technologies.

2.
Cell Rep ; 43(7): 114478, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985668

ABSTRACT

Lyssavirus is a kind of neurotropic pathogen that needs to evade peripheral host immunity to enter the central nervous system to accomplish infection. NLRP3 inflammasome activation is essential for the host to defend against pathogen invasion. This study demonstrates that the matrix protein (M) of lyssavirus can inhibit both the priming step and the activation step of NLRP3 inflammasome activation. Specifically, M of lyssavirus can compete with NEK7 for binding to NLRP3, which restricts downstream apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. The serine amino acid at the 158th site of M among lyssavirus is critical for restricting ASC oligomerization. Moreover, recombinant lab-attenuated lyssavirus rabies (rabies lyssavirus [RABV]) with G158S mutation at M decreases interleukin-1ß (IL-1ß) production in bone-marrow-derived dendritic cells (BMDCs) to facilitate lyssavirus invasion into the brain thereby elevating pathogenicity in mice. Taken together, this study reveals a common mechanism by which lyssavirus inhibits NLRP3 inflammasome activation to evade host defenses.

3.
Neuroimage Clin ; 43: 103636, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38950504

ABSTRACT

The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.

4.
ISA Trans ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972824

ABSTRACT

In this paper, angle attitude control is investigated for a networked pneumatic muscle actuators system (NPMAS) with input quantization and disturbance. A hysteretic quantizer is presented to effectively avoid the problem of high frequency oscillation in the process of quantization. A novel prescribed-time nonlinear extended state observer (PTNESO) is designed to continuously observe states and lumped disturbances of NPMAS, which ensures that the observation error converges in prescribed time. An active disturbance rejection control (ADRC) method based on PTNESO is designed to compensate for the lumped disturbances and achieve accurate angle tracking. A sufficient condition of bounded stability for NPMAS is given by the Lyapunov method. Finally, comparative experiments are provided to verify the effectiveness of the proposed control method.

5.
Autophagy ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007910

ABSTRACT

The Lassa virus (LASV) is a widely recognized virulent pathogen that frequently results in lethal viral hemorrhagic fever (VHF). Earlier research has indicated that macroautophagy/autophagy plays a role in LASV replication, but, the precise mechanism is unknown. In this present study, we show that LASV matrix protein (LASV-Z) is essential for blocking intracellular autophagic flux. LASV-Z hinders actin and tubulin folding by interacting with CCT2, a component of the chaperonin-containing T-complexes (TRiC). When the cytoskeleton is disrupted, lysosomal enzyme transit is hampered. In addition, cytoskeleton disruption inhibits the merge of autophagosomes with lysosomes, resulting in autophagosome accumulation that promotes the budding of LASV virus-like particles (VLPs). Inhibition of LASV-Z-induced autophagosome accumulation blocks the LASV VLP budding process. Furthermore, it is found that glutamine at position 29 and tyrosine at position 48 on LASV-Z are important in interacting with CCT2. When these two sites are mutated, LASV-mut interacts with CCT2 less efficiently and can no longer inhibit the autophagic flux. These findings demonstrate a novel strategy for LASV-Z to hijack the host autophagy machinery to accomplish effective transportation.

6.
Adv Sci (Weinh) ; : e2402199, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962939

ABSTRACT

Therapeutic cancer vaccines are among the first FDA-approved cancer immunotherapies. Among them, it remains a major challenge to achieve robust lymph-node (LN) accumulation. However, delivering cargo into LN is difficult owing to the unique structure of the lymphatics, and clinical responses have been largely disappointing. Herein, inspired by the Migrated-DCs homing from the periphery to the LNs, an injectable hydrogel-based polypeptide vaccine system is described for enhancing immunostimulatory efficacy, which could form a local niche of vaccine "hitchhiking" on DCs. The OVA peptide modified by lipophilic DSPE domains in the hydrogel is spontaneously inserted into the cell membrane to achieve "antigen anchoring" on DCs in vivo. Overall, OVA peptide achieves active access LNs through recruiting and "hitchhiking" subcutaneous Migrated-DCs. Remarkably, it is demonstrated that the composite hydrogel enhances LNs targeting efficacy by approximately six-fold compared to free OVA peptide. Then, OVA peptide can be removed from the cell surface under a typical acidic microenvironment within the LNs, further share them with LN-resident APCs via the "One-to-Many" strategy (One Migrated-DC corresponding to Many LN-resident APCs), thereby activating powerful immune stimulation. Moreover, the hydrogel vaccine exhibits significant tumor growth inhibition in melanoma and inhibits pulmonary metastatic nodule formation.

8.
Lung ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910197

ABSTRACT

INTRODUCTION: Transbronchial lung cryobiopsy (TBLC) is increasingly used to diagnose interstitial lung disease (ILD). The 1.1-mm cryoprobe has recently been available in clinical practice. The diagnostic yield and safety of TBLC using a 1.1-mm cryoprobe need to be confirmed. METHODS: A prospective, randomized controlled trial was conducted in patients with suspected ILD and randomly assigned to 1.1-mm and 1.9-mm cryoprobe groups. The primary outcome was the diagnostic yield of multidisciplinary discussion. Secondary outcomes were sample quality and incidence of complications. The tension and stress effects during TBLC onto the target lobe caused by 1.1-mm and 1.9-mm cryoprobes were also evaluated using finite element analysis. RESULTS: A total of 224 patients were enrolled. No significant differences were observed in the diagnostic yield (80.4% vs. 79.5%, p = 0.845) and sample quality scores (5.73 ± 0.64 vs. 5.66 ± 0.77; p = 0.324) between the 1.9-mm cryoprobe group and 1.1-mm cryoprobe group. The average surface areas of samples in 1.1-mm cryoprobe group were smaller, while no difference in sample weights was observed. A decreased incidence of moderate bleeding was found in the 1.1-mm cryoprobe group (17.0% vs. 6.2%, p = 0.027), while there was no difference in the incidence of the pneumothorax, there was a trend to higher rate of pneumothorax in 1.1-mm group. In finite element analysis, the 1.1-mm cryoprobe required the largest tension and produced the largest stress. CONCLUSION: Compared with a 1.9-mm cryoprobe, there was no difference in specimen quality or diagnostic rate but smaller sample size with a 1.1-mm cryoprobe. There was a decreased risk of moderate bleeding, but a trend towards increased risk for pneumothorax with 1.1-mm cryoprobe. TRAIL REGISTRATION: Clinicaltrials.gov identifier NCT04047667; registered August 4, 2019.

9.
J Clin Anesth ; 97: 111524, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941870

ABSTRACT

STUDY OBJECTIVE: HR18034, composed of the ropivacaine encapsulated in multi-lamellar, concentric circular structure liposomes as the major component and a small amount of free ropivacaine, has performed well in animal experiments and phase I clinical trials. This trial was to investigate the efficacy, safety, pharmacokinetic profile and the minimum effective dose of HR18034 for postoperative analgesia after hemorrhoidectomy compared with ropivacaine. DESIGN: A multicenter, randomized, double-blind trial. SETTING: 19 medical centers in China. PATIENTS: 85 patients undergoing hemorrhoidectomy between October 2022 to November 2022. INTERVENTIONS: Patients were randomly divided into HR 18034 190 mg group, 285 mg group, 380 mg group and ropivacaine 75 mg group, receiving single local anesthetic perianal injection for postoperative analgesia. MEASUREMENTS: The primary outcome was the area under the resting state NRS score -time curve within 72 h after injection. The second outcomes included the proportion of patients without pain, the proportion of patients not requiring rescue analgesia, cumulative morphine consumption for rescue analgesia, etc. Safety was evaluated by adverse events incidence and plasma ropivacaine concentrations were measured to explore the pharmacokinetic characteristics of HR18034. MAIN RESULTS: The areas under the NRS score (at rest and moving states)-time curve were significantly lower in HR 18034 380 mg group than ropivacaine 75 mg at 24 h, 48 h, and 72 h after administration. However, this superiority was not observed in HR18034 190 mg group and 285 mg group. There was no difference in cumulative morphine consumption for rescue analgesia between HR 18034 groups and ropivacaine group. CONCLUSIONS: HR 18034 380 mg showed superior analgesic efficacy and equivalent safety compared to ropivacaine 75 mg after hemorrhoidectomy, thus preliminarily determined as minimum effective dose.

10.
Anal Chim Acta ; 1312: 342780, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834272

ABSTRACT

BACKGROUND: The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS: We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol µL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE: The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.


Subject(s)
Aptamers, Nucleotide , Thrombin , Triazines , Triazines/chemistry , Triazines/isolation & purification , Aptamers, Nucleotide/chemistry , Humans , Thrombin/analysis , Thrombin/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Solid Phase Extraction/methods
11.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831289

ABSTRACT

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Subject(s)
Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
12.
Water Res ; 261: 121973, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38924950

ABSTRACT

With the increasing production and application, more molybdenum disulfide (MoS2) nanosheets could be released into environment. The aggregation and dispersion of MoS2 nanosheets profoundly impact their transport and transformation in the aquatic environment. However, the colloidal stability of MoS2 remains largely unknown in natural surface waters. This study investigated the colloidal stability of MoS2 nanosheets in six natural surface waters affected by both light irradiation and water chemistry. Compared to that of the pristine MoS2 nanosheets, the colloidal stability of MoS2 photoaged in ultrapure water declined. Light irradiation induced the formation of Mo-O bonds, the release of SO42- species, and the decrease in 1T/2H ratio, which reduced negative charge and enhanced hydrophobicity. However, the colloidal stability of MoS2 photoaged in natural surface waters was increased relative to that in ultrapure water not only for the smaller extent of photochemical transformation but more importantly the surface modification by water chemistry. Furthermore, the colloidal stability of MoS2 photoaged in natural surface waters followed the order of sea water > lake water > river water. The abundant cations (e.g., Ca2+ and Mg2+) in sea water facilitated the covalent grafting (S-C bonds) of more dissolved organic matter (DOM) on MoS2 via charge screening and cation bridging, thus inducing stronger electrostatic repulsion and steric effect to stabilize nanosheets. The crucial role of the covalent grafting of DOM was further confirmed by the positive correlation between the critical coagulation concentration values and S-C ratios (R2 = 0.82, p < 0.05). Our results highlighted the dominant role of water chemistry than light irradiation in dictating the colloidal stability of MoS2 photoaged in natural surface waters, which provided new insight into the environmental behavior of MoS2 in aquatic environment.

13.
J Sci Food Agric ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856111

ABSTRACT

BACKGROUND: Traditional sun-drying aquatic products are popular and recognized by customers, owing to their unique flavor and long-term preservation. However, the product quality and production efficiency cannot be guaranteed. Cololabis saira is rich in unsaturated fatty acids, which are susceptible to hyperoxidation during the drying process. This study aimed to make clear the role of ultraviolet (UV) radiation in flavor formation during drying processes of Cololabis saira to develop a modern drying technology. RESULTS: Lipid oxidation analysis revealed that moderate hydrolytic oxidation occurred in the UV-assisted cold-air drying group due to the combined influence of UV and cold-air circulation, resulting in the thiobarbituric acid reactive substances value being higher than that of cold-air drying group but lower than the natural drying group. Hexanal, heptanal, cis-4-heptenal, octanal, nonanal, (trans,trans)-2,4-heptadienal, (trans,trans)-2,6-nonanedial, 1-octen-3-ol, heptanol, 2,3-pentanedione, 3,5-octadien-2-one and trimethylamine were identified as the characteristic flavor odor-active compounds present in all Cololabis saira samples. Yet, during the natural drying process, sunlight promoted the lipid oxidation, resulting in the highest degree of lipid oxidation among three drying methods. Light and heat promoted lipid oxidation in Cololabis saira prepared through natural drying process, leading to a large accumulation of volatile compounds, such as 3-methylbutyraldehyde, 2,3-pentanedione, 1-propanol, and 3-pentanone. Cold air circulation inhibited lipid oxidation to some extent, resulting in a blander flavor profile. More cis-4-heptenal, cis-2-heptenal, octanal and 2-ethylfuran accumulated during the UV-assisted cold-air drying process, enriching its greasy flavor and burnt flavor. CONCLUSION: UV-assisted cold-air drying could promote moderate lipid oxidation, which is beneficial for improving product flavor. To sum up, UV radiation played a crucial role in the flavor formation during the drying process of Cololabis saira. © 2024 Society of Chemical Industry.

14.
Bioresour Technol ; 404: 130918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823562

ABSTRACT

Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup+) strain (wild type) and a Hup- strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup- nodules, Hup+ nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.


Subject(s)
Glycine max , Hydrogen , Polychlorinated Biphenyls , Symbiosis , Polychlorinated Biphenyls/metabolism , Symbiosis/physiology , Glycine max/metabolism , Glycine max/microbiology , Hydrogen/metabolism , Rhizobium/physiology , Biotransformation , Bradyrhizobium/metabolism , Bradyrhizobium/physiology , Biodegradation, Environmental
15.
Article in English | MEDLINE | ID: mdl-38875079

ABSTRACT

Distinguishing Hashimoto's thyroiditis (HT) lesions from ordinary thyroid tissues is difficult with ultrasound images. Challenges in achieving high performance of HT ultrasound image classification include the low resolution, blurred features and large area of irrelevant noise. To address these problems, we propose a Feature-level Boosting Ensemble Network (FBENet) for HT ultrasound image classification. Specifically, to capture the features of suspicious HT lesions efficiently, an Ensemble Feature Boosting Module (EFBM) is introduced into the feature-level ensemble to boost the blurred features. Then, the spatial attention mechanism is adopted in backbone models to improve the feature focusing performance and representation ability. Furthermore, feature-level ensemble technique is employed in the training process to achieve more comprehensive feature representation ability. Experimentally, FBENet was trained on 6,503 HT ultrasound images, and tested on 1,626 HT ultrasound images with 82.92% accuracy and 89.24% AUC on average.

16.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833985

ABSTRACT

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Subject(s)
Cadmium , Catechin , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Tryptophan/metabolism , Tryptophan/analogs & derivatives , Cadmium/toxicity , Signal Transduction/drug effects , Male , Intestines/drug effects , Intestines/pathology , Mice, Inbred C57BL , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Indoles/pharmacology , Carbazoles/pharmacology
17.
J Virol Methods ; 328: 114960, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823586

ABSTRACT

Canine Infectious Respiratory Disease Complex (CIRDC) is a highly infectious diseases. Canine respiratory coronavirus (CRCoV), Canine influenza virus (CIV), Canine distemper virus (CDV), and Canine parainfluenza virus (CPiV) are crucial pathogens causing CIRDC. Due to the similar clinical symptoms induced by these viruses, differential diagnosis based solely on symptoms can be challenging. In this study, a multiplex real-time PCR assay was developed for detecting the four RNA viruses of CIRDC. Specific primers and probes were designed to target M gene of CRCoV, M gene of CIV, N gene of CDV and NP gene of CPiV. The detection limit is 10 copies/µL for CIV or CRCoV, while the detection limit of CDV or CPiV is 100 copies/µL. Intra-group and inter-group repeatability coefficient of variation (CV) were both less than 2 %. A total of 341 clinical canine samples were analyzed, and the results indicated that the method developed in our study owns a good consistency and better specificity compared with the conventional reverse transcription PCR. This study provides a new method to enable the simultaneous detection of all four pathogens in a single reaction, improving the efficiency for monitoring the prevalence of four viruses in CIRDC, which benefits the control of CIRDC.


Subject(s)
Dog Diseases , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Animals , Dogs , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Dog Diseases/diagnosis , Dog Diseases/virology , Distemper Virus, Canine/genetics , Distemper Virus, Canine/isolation & purification , Coronavirus, Canine/genetics , Coronavirus, Canine/isolation & purification , DNA Primers/genetics , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology
18.
Int J Nanomedicine ; 19: 5511-5522, 2024.
Article in English | MEDLINE | ID: mdl-38895144

ABSTRACT

Introduction: Chrysin has a wide range of biological activities, but its poor bioavailability greatly limits its use. Here, we attempted to prepare casein (cas)-based nanoparticles to promote the biotransfer of chrysin, which demonstrated better bioavailability and anti-infection activity compared to free chrysin. Methods: Cas-based chrysin nanoparticles were prepared and characterized, and most of the preparation process was optimized. Then, the in vitro and in vivo release characteristics were studied, and anti-pulmonary infection activity was evaluated. Results: The constructed chrysin-cas nanoparticles exhibited nearly spherical morphology with particle size and ζ potential of 225.3 nm and -33 mV, respectively. These nanoparticles showed high encapsulation efficiency and drug-loading capacity of 79.84% ± 1.81% and 11.56% ± 0.28%, respectively. In vitro release studies highlighted a significant improvement in the release profile of the chrysin-cas nanoparticles (CCPs). In vivo experiments revealed that the relative oral bioavailability of CCPs was approximately 2.01 times higher than that of the free chrysin suspension. Further investigations indicated that CCPs effectively attenuated pulmonary infections caused by Acinetobacter baumannii by mitigating oxidative stress and reducing pro-inflammatory cytokines levels, and the efficacy was better than that of the free chrysin suspension. Conclusion: The findings underscore the advantageous bioavailability of CCPs and their protective effects against pulmonary infections. Such advancements position CCPs as a promising pharmaceutical agent and candidate for future therapeutic drug innovations.


Subject(s)
Biological Availability , Caseins , Flavonoids , Nanoparticles , Particle Size , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/pharmacokinetics , Caseins/chemistry , Caseins/pharmacokinetics , Animals , Nanoparticles/chemistry , Mice , Drug Liberation , Male , Oxidative Stress/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Cytokines/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
19.
J Proteome Res ; 23(7): 2505-2517, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38845157

ABSTRACT

Escherichia coli Nissle 1917 (EcN 1917) exhibits distinct tumor-targeting activity, and early studies demonstrated that outer membrane vesicles (OMVs) mediate bacteria-host interactions. To decipher the molecular mechanism underlying the interaction between EcN 1917 and host cells via OMV-mediated communication, we investigated the phenotypic changes in Caco-2 cells perturbed by EcN 1917-derived OMVs and constructed proteomic maps of the EcN 1917-derived OMV components and OMV-perturbed host cells. Our findings revealed that the size of the EcN 1917-derived OMV proteome increased 4-fold. Treatment with EcN 1917-derived OMVs altered the proteomic and phosphoproteomic profiles of host cells. Importantly, for the first time, we found that treatment with EcN 1917-derived OMVs inhibited cancer cell migration by suppressing the expression of ANXA9. In addition, phosphoproteomic data suggested that the ErbB pathway may be involved in OMV-mediated cell migration. Taken together, our study provides valuable data for further investigations of OMV-mediated bacteria-host interactions and offers great insights into the underlying mechanism of probiotic-assisted colorectal cancer therapy.


Subject(s)
Cell Movement , Escherichia coli , Proteome , Proteomics , Humans , Caco-2 Cells , Proteomics/methods , Escherichia coli/metabolism , Proteome/analysis , Proteome/metabolism , Bacterial Outer Membrane/metabolism
20.
Vet Microbiol ; 295: 110159, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941768

ABSTRACT

Rabies, caused by lyssavirus rabies (Rabies lyssavirus, RABV), is a fatal disease among humans and almost all warm-blooded animals. In this study, we found that RABV infection induces the up-regulation of receptor transporter protein 4 (RTP4) in mouse brains and different cells of nervous tissue. Over-expression of RTP4 reduces the viral titer of RABV in different neuronal cells. Furthermore, a recombinant RABV expressing RTP4, named rRABV-RTP4, was constructed and displayed a lower viral titer in different neuronal cells due to the expression of RTP4. Moreover, the survival rates of mice infected with rRABV-RTP4 were significantly higher than those of mice infected with parent virus rRABV or control virus rRABV-RTP4(-). In terms of mechanism, RTP4 could bind viral genomic RNA (vRNA) of RABV, and suppress the whole viral genome amplification. In addition, we found that the zinc finger domain (ZFD) of RTP4 exerts the antiviral function by truncation analysis, and an important amino acids site (C95) in the RTP4 3CxxC motif which is essential for its antiviral function was identified by mutation analysis. This study contributes to our understanding of how RTP4 or other RTP proteins play a role in defense against the invasion of RABV or other viruses.


Subject(s)
RNA, Viral , Rabies virus , Rabies , Animals , Mice , Rabies/virology , RNA, Viral/genetics , Rabies virus/genetics , Rabies virus/physiology , Rabies virus/pathogenicity , Genome, Viral , Humans , Lyssavirus/genetics , Brain/virology , Cell Line , Virus Replication , Neurons/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...