Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
1.
Clin Transl Med ; 14(7): e1753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967349

ABSTRACT

BACKGROUND: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS: We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION: Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS: YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.


Subject(s)
Epigenesis, Genetic , Triple Negative Breast Neoplasms , Y-Box-Binding Protein 1 , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Female , Epigenesis, Genetic/genetics , Animals , Disease Progression , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Histones/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Lysine/analogs & derivatives
2.
Article in English | MEDLINE | ID: mdl-38914132

ABSTRACT

PURPOSE: Lumbar interbody fusion is a commonly applied surgical treatment for spondylolisthesis. For this procedure, various minimally invasive approaches have been developed, including posterior lumbar interbody fusion, transforaminal lumbar interbody fusion (TLIF), oblique lumbar interbody fusion, and anterior lumbar interbody fusion. OBJECTIVE: In this study, we characterized the features of a minimally invasive (MIS) trans-pars interarticularis approach for lumbar interbody fusion (TPLIF) and compared its surgical outcomes with those of MIS-TLIF. METHODS: This study included 89 and 44 patients who had undergone MIS-TPLIF and MIS-TLIF, respectively, between September 2016 and December 2022. The following clinical outcomes were analyzed: operative time, blood loss, and hospitalization duration. RESULTS: For the MIS-TPLIF and MIS-TLIF groups, the average operative time, blood loss, and hospitalization duration were, respectively 98.28 and 191.15 min, 41.97 and 101.85 mL, and 5.8 and 6.9 days. CONCLUSION: The MIS-TPLIF approach for lumbar spondylolisthesis or other degenerative diseases involves the use of the commonly available and cost-effective instrument Taylor retractor, thus enabling posterior lumbar interbody fusion to be performed with minimal invasion. This approach also confers the benefits of a short learning curve and an intuitive approach. Our results suggest that although MIS-TPLIF is noninferior to MIS-TLIF, it is easier to learn and perform than MIS-TLIF.

3.
J Colloid Interface Sci ; 672: 383-391, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38848622

ABSTRACT

Electrocatalytic nitrate removal offers a sustainable approach to alleviate nitrate pollution and to boost the anthropogenic nitrogen cycle, but it still suffers from limited removal efficiency at high rates, especially at low levels of nitrate. Herein, we report the near-complete removal of low-level nitrate (10-200 ppm) within 2 h using ultrathin cobalt-based nanosheets (CoNS) containing surface oxygen, which was fabricated from in-situ electrochemical reconstruction of conventional nanosheets. The average nitrate removal of 99.7 % with ammonia selectivity of 98.2 % in 9 cyclic runs ranked in the best of reported catalysts. Powered by a solar cell under the winter sun, the full-cell nitrate electrolysis system, equipped with ultrathin CoNS, achieved 100 % nitrogen gas selectivity and 99.6 % total nitrogen removal. The in-situ Fourier Transform Infrared included experiments and theoretical computations revealed that in-situ electrochemical reconstruction not only increased electrochemical active surface area but also constructed surface oxygen in active sites, leading to enhanced stabilization of nitrate adsorption in a symmetry breaking configuration and charge transfer, contributing to near-complete nitrate removal on ultrathin CoNS. This work provides a strategy to design ultrathin nanocatalysts for nitrate removal.

4.
Inorg Chem ; 63(26): 12350-12359, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38887050

ABSTRACT

Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.

5.
World Neurosurg ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796141

ABSTRACT

OBJECTIVE: The efficacy of medical treatments and the changes in radiologic imaging before and after treatment have consistently remained pivotal factors. This is particularly critical for surgical procedures, where precise evaluation of disparities pre and postsurgery or the accuracy of implantation is paramount. Based on three-dimensional morphological interests, we provide an automatic quantification evaluation method that delivers an evident base for assessing the outcomes of a widely employed surgical technique, cervical laminoplasty. METHODS: The sample study included patients who underwent cervical laminoplasty for cervical spondylotic myelopathy/ossification of the longitudinal ligament. We present a superimposition method that facilitates a unique and precise assessment between pre and postsurgery. The degree of expansion was evaluated by the canal volume increase and canal expansion rate after surgery. RESULTS: There were 31 patients with 112 vertebral segments measured. The target cervical's pre and postoperative canal areas were 122.63 ± 30.34 and 196.50 ± 37.10 mm2, respectively (P < 0.001). The average cervical canal expansion rate was 64.42%. The expansion effect of C5 cervical laminoplasty was the maximum (71.01%), and the canal volume of other segments expanded by approximately 60%. The functional outcomes demonstrated significant improvements in symptoms. CONCLUSIONS: The quantification evaluation method can be utilized for any morphology changes before and after laminoplasty, as it does not lead to errors or variations from different inspection machines or human factors. The automatic method delivers an evident base for assessing the outcomes of a widely employed surgical technique.

6.
Heliyon ; 10(9): e29859, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694127

ABSTRACT

Background: Resistance to oxaliplatin (L-OHP) is a major barrier in the treatment of colorectal cancer (CRC). Autophagy is the main cause of L-OHP tolerance in CRC cells. Method: The human colon cancer cell lines HCT116 and SW480 were treated with L-OHP to obtain the drug-resistant cell lines HCT116/L-OHP and SW480/L-OHP, respectively. To probe the relationship between autophagy and L-OHP tolerance of growth factor independent 1 (Gfi-1) and high-mobility group protein 1 (HMGB1) in CRC cells, gene knockout or overexpression was performed, and Western blotting was used to determine the levels of drug tolerance interrelated proteins. Transwell and CCK-8 assays were employed to analyze the proliferation of cancer cells. Immunofluorescence detection of LC3 reflected autophagy levels. Finally, the relationship between Gfi-1 and HMGB1 was detected by chromatin immunoprecipitation (ChIP). Result: Compared to normal CRC cells, L-OHP-tolerant CRC cells exhibited greater autophagy (8.2 times greater in HCT116/L-OHP cells and 7.4 times greater in SW480/L-OHP cells). In addition, we detected low levels of Gfi-1 (0.6-fold for HCT116/L-OHP cells and 0.4-fold for SW480/L-OHP cells), and OE-Gfi-1 decreased HMGB1 levels (0.6-fold for HCT116/L-OHP + OE-Gfi-1 cells and 0.5-fold for SW480/L-OHP + OE-Gfi-1 cells). The inhibition of Gfi-1 further enhanced cell viability (1.7 times in HCT116+sh-Gfi-1 cells and 1.2 times in SW480+sh-Gfi-1 cells) and invasion (1.8 times in HCT116+sh-Gfi-1 cells and 2.1 times in SW480+sh-Gfi-1 cells) in CRC cells, thus promoting oxaliplatin resistance in these cells. The autophagy inhibitor 3-MA reversed the above effects. Furthermore, we noted that Gfi-1 can restrain HMGB1 expression by binding to its promoter (0.5 times in HCT116+OE-Gfi-1 cells and 0.5 times in SW480+OE-Gfi-1 cells). The inhibitory influence of 3-MA on HMGB1 reversed the influence of Gfi-1 on autophagy and malignant progression in CRC cells. Conclusion: Our study suggested that Gfi-1 inhibited HMGB1 to reduce CRC autophagy levels, increasing CRC sensitivity to L-OHP.

7.
Sci Total Environ ; 933: 173166, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735315

ABSTRACT

Lead (Pb) contamination in wheat grain is of great concern, especially in North China. Atmospheric deposition is a major contributor to Pb accumulation in wheat grain. Screening low Pb accumulating wheat varieties has been an effective method for addressing Pb contamination in wheat grain. However, identifying wheat varieties with low Pb accumulation based on foliar uptake of atmospheric Pb has been neglected. Therefore, two field trials with distinct atmospheric Pb deposition were conducted to screen for stable varieties with low Pb accumulation. It was verified that YB700 and CH58, which have high thousand-grain weights and stable low Pb accumulation in field 1 (0.19 and 0.13 mg kg-1) and field 2 (0.17 and 0.20 mg kg-1), respectively, were recommended for cultivation in atmospheric Pb contaminated farmlands in North China. Furthermore, indoor experiments were conducted to investigate Pb uptake by the roots and leaves of different wheat varieties. Our findings indicate that Pb accumulation in different wheat varieties is primarily influenced by foliar Pb uptake rather than root Pb uptake. Interestingly, there was a positive correlation (p < 0.05) between the Pb concentrations in leaves and the stomatal width and trichome length of the adaxial epidermal surface. Additionally, there is a positive correlation (p < 0.01) between the Pb concentration in the wheat grain and trichome length. In conclusion, the screening of wheat varieties with narrower stomatal widths or shorter trichomes based on foliar uptake pathways is an effective strategy for ensuring food safety in areas contaminated by atmospheric Pb.


Subject(s)
Lead , Plant Leaves , Soil Pollutants , Triticum , Triticum/metabolism , Lead/metabolism , Plant Leaves/metabolism , China , Soil Pollutants/metabolism , Soil Pollutants/analysis , Environmental Monitoring/methods , Air Pollutants/analysis
8.
BMC Public Health ; 24(1): 1275, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724960

ABSTRACT

OBJECTIVE: This study aimed to evaluate the cost-utility of the addition of vericiguat for treating chronic heart failure (CHF) in China from the healthcare payer's perspective. METHODS: A Markov model was built to estimate the cost and utility of treating CHF using vericiguat plus standard treatment (vericiguat group) vs. standard treatment alone (standard treatment group). The clinical parameters (mortality of cardiovascular and hospitalization rate of HF) were calculated according to the VICTORIA clinical trial. The HF cost and utility data were obtained from the literature published in China. One-way sensitivity analysis and probability sensitivity analysis were performed. RESULTS: According to the 13-year model, vericiguat was more expensive (155599.07 CNY vs. 259396.83 CNY) and more effective (4.41 QALYs vs. 4.54 QALYs). The incremental cost-utility ratio (ICUR) was 802389.27 CNY per QALY. One-way sensitivity analysis revealed that cardiovascular mortality in the two groups was the parameter that had the greatest impact on the results. The GDP per capita in 2022 in China was 85,700 CNY. The probability sensitivity analysis (PSA) showed that the probability of vericiguat being cost-effective was only 41.7% at the willingness-to-pay (WTP) threshold of 3 times GDP per capita (257,100 CNY). CONCLUSIONS: In China, the treatment of CHF with vericiguat is not cost-effective. The drug price could decrease to 145.8 CNY, which could be considered cost-effective.


Subject(s)
Cost-Benefit Analysis , Heart Failure , Markov Chains , Pyrimidines , Stroke Volume , Humans , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/economics , China , Pyrimidines/therapeutic use , Pyrimidines/economics , Chronic Disease/drug therapy , Drug Therapy, Combination , Quality-Adjusted Life Years , Male , Female , Heterocyclic Compounds, 2-Ring
9.
ACS Nano ; 18(20): 13226-13240, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712706

ABSTRACT

Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.


Subject(s)
Epigenesis, Genetic , Immunotherapy , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Animals , Epigenesis, Genetic/drug effects , Mice , T-Lymphocytes, Cytotoxic/immunology , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Nanoparticles/chemistry , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology
10.
BMC Infect Dis ; 24(1): 506, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773459

ABSTRACT

BACKGROUND: The sharp increase in fungal infections, insufficient diagnostic and treatment capabilities for fungal infections, poor prognosis of patients with fungal infections as well as the increasing drug resistance of fungi are serious clinical problems. It is necessary to explore the implementation and evaluation methods of antifungal stewardship (AFS) to promote the standardized use of antifungal drugs. METHODS: The AFS programme was implemented at a tertiary first-class hospital in China using a plan-do-check-act (PDCA) quality management tool. A baseline investigation was carried out to determine the utilization of antifungal drugs in pilot hospitals, analyse the existing problems and causes, and propose corresponding solutions. The AFS programme was proposed and implemented beginning in 2021, and included various aspects, such as team building, establishment of regulations, information construction, prescription review and professional training. The management effectiveness was recorded from multiple perspectives, such as the consumption of antifungal drugs, the microbial inspection rate of clinical specimens, and the proportion of rational prescriptions. The PDCA management concept was used for continuous improvement to achieve closed-loop management. RESULTS: In the first year after the implementation of the AFS programme, the consumption cost, use intensity and utilization rate of antifungal drugs decreased significantly (P < 0.01). The proportion of rational antifungal drug prescriptions markedly increased, with the proportion of prescriptions with indications increasing from 86.4% in 2019 to 97.0% in 2022, and the proportion of prescriptions with appropriate usage and dosage increased from 51.9 to 87.1%. In addition, after the implementation of the AFS programme, physicians' awareness of the need to complete microbial examinations improved, and the number of fungal cultures and serological examinations increased substantially. Statistics from drug susceptibility tests revealed a decrease in the resistance rate of Candida to fluconazole. CONCLUSION: This study indicated that the combination of AFS and the PDCA cycle could effectively reduce antifungal consumption and promote the rational use of antifungal drugs, providing a reference for other health care systems to reduce the overuse of antifungal drugs and delay the progression of fungal resistance.


Subject(s)
Antifungal Agents , Antimicrobial Stewardship , Mycoses , Tertiary Care Centers , Antifungal Agents/therapeutic use , Humans , China , Mycoses/drug therapy , Mycoses/microbiology , Drug Resistance, Fungal , Drug Utilization/standards , Drug Utilization/statistics & numerical data
11.
Zhongguo Gu Shang ; 37(4): 345-51, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38664203

ABSTRACT

OBJECTIVE: To investigate the clinical efficacy of oblique lumbar interbody fusion(OLIF) combined with posterior percutaneous internal fixation in patients with lumbar spinal stenosis with or without redundant nerve roots(RNRs). METHODS: A retrospective analysis of 92 patients with lumbar spinal stenosis treated by oblique lateral lumbar interbody fusion combined with posterior percutaneous internal fixation from June 2019 to June 2022 was performed. There were 32 males and 60 females, aged from 44 to 82 years old with an average of (63.67±9.93) years old. All patients were divided into RNRs positive group and RNRs negative group according to redundancy or not before operation. There were 38 patients in RNRs positive group, including 15 males and 23 females. The age ranged from 45 to 82 years old with an average of (65.45±10.37) years old. The disease duration was 24.00(12.00, 72.00) months. There were 54 patients in RNRs negative group, including 17 males and 37 females. The age ranged from 44 to 77 years old with an average of (62.42±9.51) years old. The disease duration was 13.50(9.00, 36.00) months. The general data of patients were recorded, including operation time, intraoperative blood loss and complications. The imaging parameters before and after operation were observed, including the number of stenosis segments, intervertebral space height, lumbar lordosis angle and dural sac area. The visual analogue scale (VAS) was used to evaluate the back and lower extremity pain, and the Oswestry disability index (ODI) was used to evaluate the activities of daily living. RESULTS: All patients were followed up for 8 to 18 months with an average of (11.04±3.61) months, and no complications were found during the follow-up period.The number of stenosis segments in RNRs positive group (1.71±0.46) was more than that in RNRs negative group(1.17±0.38). In RNRs positive group, intervertebral space height, dural sac area, low back pain VAS, lower extremity pain VAS, ODI score were (1.11±0.19) cm, (0.46±0.17) cm2, (5.39±1.00) scores, (5.05±1.01) points, (55.74±4.05) points, respectively. RNRs negative groups respectively (0.97±0.23) cm, (0.69±0.26) cm2, (4.50±0.77) scores, (4.00±0.58) scores, (47.33±3.43) %. In RNRs positive group, intervertebral space height, dural sac area, low back pain VAS, leg pain VAS, ODI score were (1.60±0.19) cm, (0.74±0.36) cm2, (3.39±0.72) scores, (3.05±1.01) scores, (46.74±4.82) scores, respectively. RNRs negative groups respectively (1.48±0.25) cm, (1.12±0.35) cm2, (3.00±0.82) scores, (3.00±0.82) scores, (37.67±3.58) %. The postoperative intervertebral space height, dural sac area, low back pain VAS score, lower extremity pain VAS and ODI score of the patients in the RNRs positive group and the negative group were significantly improved compared with those before operation, and the differences were statistically significant (P<0.05). There were statistically significant differences in the number of stenosed segments, preoperative intervertebral space height, dural sac area, low back pain VAS, lower extremity pain VAS, and ODI between the two groups(P<0.05). There were significant differences in postoperative intervertebral space height and postoperative ODI between the two groups(P<0.05), but there was no significant difference in intervertebral space height before and after operation and ODI score before and after operation(P>0.05). There were significant differences in operation time, intraoperative blood loss, postoperative dural sac area, difference of dural sac area before and after operation, postoperative low back pain VAS, difference of low back pain VAS score before and after operation, difference of lower extremity pain VAS before and after operation between the two groups(P<0.05). CONCLUSION: OLIF combined with posterior percutaneous internal fixation has a good effect on patients with or without RNRs. Multi-segmental lumbar spinal stenosis and decreased dural sac area may lead to the occurrence of RNRs, and LSS patients with RNRs have more severe symptoms. LSS patients with RNRs have worse surgical outcomes than those without RNRs.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Spinal Stenosis , Humans , Spinal Stenosis/surgery , Male , Female , Middle Aged , Aged , Lumbar Vertebrae/surgery , Adult , Retrospective Studies , Aged, 80 and over , Spinal Fusion/methods , Spinal Nerve Roots/surgery , Treatment Outcome
12.
Regen Biomater ; 11: rbae036, 2024.
Article in English | MEDLINE | ID: mdl-38628547

ABSTRACT

Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avß3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.

13.
Nanomicro Lett ; 16(1): 173, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619642

ABSTRACT

With the diversified development of big data, detection and precision guidance technologies, electromagnetic (EM) functional materials and devices serving multiple spectrums have become a hot topic. Exploring the multispectral response of materials is a challenging and meaningful scientific question. In this study, MXene/TiO2 hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering. More importantly, MXene/TiO2 hybrids exhibit adjustable spectral responses in the GHz, infrared and visible spectrums, and several EM devices are constructed based on this. An antenna array provides excellent EM energy harvesting in multiple microwave bands, with |S11| up to - 63.2 dB, and can be tuned by the degree of bending. An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband. An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14 µm. This work can provide new inspiration for the design and development of multifunctional, multi-spectrum EM devices.

14.
Prev Vet Med ; 226: 106187, 2024 May.
Article in English | MEDLINE | ID: mdl-38554654

ABSTRACT

A systematic review and meta-analysis were performed to identify the global prevalence and factors associated with Toxoplasma gondii infection in wild birds. Six bibliographic databases (Chinese National Knowledge Infrastructure, VIP Chinese Journal Database, Wanfang Data, PubMed, Web of science and ScienceDirect) were searched from inception to February 2023. The search yielded 1220 records of which 659 articles underwent full-text evaluation, which identified 49 eligible articles and 16,030 wild bird samples that were included in the meta-analysis. The estimated pooled global prevalence of T. gondii infection in wild birds was 16.6%. Out of the variables tested, publication year after 2020 and climate type were significantly associated with T. gondii infection (P<0.01). Our data indicate that the prevalence of T. gondii in wild birds can be influenced by epidemiological variables. Further research is needed to identify the biological, environmental, anthropogenic, and geographical risk factors which impact the ecology and prevalence of T. gondii in wild birds.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Animals , Prevalence , Toxoplasmosis, Animal/epidemiology , Animals, Wild , Risk Factors , Birds , Seroepidemiologic Studies
15.
Biomacromolecules ; 25(4): 2542-2553, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38547378

ABSTRACT

Negative pressure wound therapy (NPWT) is effective in repairing serious skin injury. The dressing used in the NPWT is important for wound healing. In this paper, we develop biodegradable amphiphilic polyurethanes (PUs) and fabricate the PUs into sponges as wound dressings (Bi@e) with Janus pore architectures for NPWT. The Bi@e is adaptive to all the stages of the wound healing process. The Janus Bi@e sponge consists of two layers: the dense hydrophobic upper layer with small pores provides protection and support during negative pressure drainage, and the loose hydrophilic lower layer with large pores absorbs large amounts of wound exudate and maintains a moist environment. Additionally, antibacterial agent silver sulfadiazine (SSD) is loaded into the sponge against Escherichia coli and Staphylococcus aureus with a concentration of 0.50 wt%. The Janus sponge exhibits a super absorbent capacity of 19.53 times its own water weight and remarkable resistance to compression. In a rat skin defect model, the Janus Bi@e sponge not only prevents the conglutination between regenerative skin and dressing but also accelerates wound healing compared to commercially available NPWT dressing. The Janus Bi@e sponge is a promising dressing for the NPWT.


Subject(s)
Negative-Pressure Wound Therapy , Animals , Rats , Wound Healing , Bandages , Skin , Suppuration
16.
World J Stem Cells ; 16(2): 176-190, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38455106

ABSTRACT

BACKGROUND: Cartilage defects are some of the most common causes of arthritis. Cartilage lesions caused by inflammation, trauma or degenerative disease normally result in osteochondral defects. Previous studies have shown that decellularized extracellular matrix (ECM) derived from autologous, allogenic, or xenogeneic mesenchymal stromal cells (MSCs) can effectively restore osteochondral integrity. AIM: To determine whether the decellularized ECM of antler reserve mesenchymal cells (RMCs), a xenogeneic material from antler stem cells, is superior to the currently available treatments for osteochondral defects. METHODS: We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70% confluence; 50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition. Decellularized sheets of adipocyte-derived MSCs (aMSCs) and antlerogenic periosteal cells (another type of antler stem cells) were used as the controls. Three weeks after ascorbic acid stimulation, the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints. RESULTS: The defects were successfully repaired by applying the ECM-sheets. The highest quality of repair was achieved in the RMC-ECM group both in vitro (including cell attachment and proliferation), and in vivo (including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues). Notably, the antler-stem-cell-derived ECM (xenogeneic) performed better than the aMSC-ECM (allogenic), while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells. CONCLUSION: Decellularized xenogeneic ECM derived from the antler stem cell, particularly the active form (RMC-ECM), can achieve high quality repair/reconstruction of osteochondral defects, suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.

17.
J Gastrointestin Liver Dis ; 33(1): 44-56, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554427

ABSTRACT

BACKGROUND AND AIMS: The incidence and mortality of hepatocellular carcinoma (HCC) are increasing. It is urgent to develop more effective HCC biomarkers for diagnosis and treatment. This project intends to verify the expression of enhancer of zeste 1 polycomb repressive complex 2 subunit (EZH1) and its mechanism in HCC. METHODS: This study integrates global microarray and high-throughput sequencing datasets, combined with internal immunohistochemistry, to analyze the expression and prognostic value of EZH1 in HCC. Functional enrichment analysis was conducted to investigate transcriptional targets, which were achieved by intersecting HCC over-expressed genes, EZH1 co-expressed genes and putative transcriptional targets. The relationship between EZH1 and anticancer drugs was detected by drug sensitivity analysis. RESULTS: In this study, 84 datasets from 40 platforms (3,926 HCC samples and 3,428 non-cancerous liver tissues) were included to show the high expression of EZH1 in HCC. Immunohistochemistry with 159 HCC samples and 62 non-HCC samples confirmed the high expression level. HCC patients with high EZH1 expression had worse survival prognoses. Gene ontology and Reactome analysis revealed that metabolism-related pathways, including autophagy, are critical for HCC. Interestingly, as one of the EZH1 potential transcriptional targets, autophagy-related 7 (ATG7) appeared in the above pathways. ATG7 was positively correlated with EZH1, upregulated in HCC, and mediated poor prognosis. Upregulation of EZH1 was found to be in contact with HCC anti-tumor drug resistance. CONCLUSIONS: The upregulation of EZH1 expression can promote the occurrence of HCC and lead to poor clinical progression and drug resistance; these effects may be mediated by regulating ATG7.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Up-Regulation , Clinical Relevance , Prognosis , Gene Expression Regulation, Neoplastic
18.
Huan Jing Ke Xue ; 45(3): 1812-1820, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471892

ABSTRACT

Heavy metal contamination of soil has become a hot issue of social concern due to its impact on the safety of agricultural products in recent years. Wheat is one of the most dominant staple food crops worldwide and has become a major source of toxic metals in human diets. Foliar application was considered to be a more efficient and economical method of heavy metal remediation. Field experiments were carried out in Cd-, As-, and Pb-contaminated farmland soils. The effects of foliar conditioners on the accumulation of Cd, As, and Pb in wheat grains were investigated after being sprayed with Zn (0.2% ZnSO4), Mg (0.4% MgSO4), and Mn (0.2% MnSO4) separately and in combination. Thus, the effective foliar conditioners were selected to block the accumulation of Cd, As, and Pb in wheat grains grown in combined heavy metal-contaminated farmland in north China. The results showed that, compared with that in the control, the Cd, As, and Pb contents in wheat grains of the Zn+Mg+Mn foliar treatment were significantly decreased by 18.96%, 23.87%, and 51.31%, respectively, and TFgrain/straw decreased by 14.62%, 27.73%, and 47.70%, respectively. Thus, spraying the compound foliar conditioner of Zn+Mg+Mn could effectively reduce heavy metal accumulation in wheat grains through inhibition translocation of those metals from stem leaves to grain. In addition, the results indicated that Cd and As were mainly distributed at the central endosperm (34.08%-37.08%), whereas Pb was primarily distributed at the pericarp and seed coat (27.78%) of the wheat grain. Compared with that in the control, spraying the compound foliar conditioner of Zn+Mg+Mn extremely decreased Cd and As accumulation in the aleurone layer of the wheat grain by 81.10% and 82.24%, respectively. Except for the pericarp, seed coat, and central endosperm layers, the Pb content in each grain layer was dramatically decreased by 42.85% to 91.15%. There was only a significant negative correlation between heavy metal content and Zn content in the aleurone layer (P2) of wheat flour. In summary, the accumulation of Cd, As, and Pb in wheat grains, especially in the aleurone layer, could be effectively reduced by foliar conditioner application at the jointing, booting, and early filling stages of wheat, separately. Furthermore, besides the foliar treatment, removing wheat bran to reduce Cd contamination in wheat grains is highly recommended to ensure the safe production of wheat.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Humans , Cadmium/analysis , Zinc , Lead , Farms , Flour , Soil Pollutants/analysis , Triticum , Soil , Edible Grain/chemistry
19.
J Am Chem Soc ; 146(8): 5414-5422, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38353405

ABSTRACT

Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order-disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(µ3-O)(µ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365-426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered-disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.

20.
iScience ; 27(2): 108840, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303717

ABSTRACT

N-α-acetyltransferase D (NatD) mediates N-α-terminal acetylation of histone H4 (Nt-Ac-H4), but its role in breast cancer metastasis remains unknown. Here, we show that depletion of NatD directly represses the expression of FOXA2, and is accompanied by a significant reduction in Nt-Ac-H4 enrichment at the FOXA2 promoter. We show that NatD is commonly upregulated in primary breast cancer tissues, where its expression level correlates with FOXA2 expression, enhanced invasiveness, and poor clinical outcomes. Furthermore, we show that FOXA2 promotes the migration and invasion of breast cancer cells by activating MMP14 expression. MMP14 is also upregulated in breast cancer tissues, where its expression level correlates with FOXA2 expression and poor clinical prognosis. Our study shows that the NatD-FOXA2-MMP14 axis functions as a key signaling pathway to promote the migratory and invasive capabilities of breast cancer cells, suggesting that NatD is a critical epigenetic modulator of cell invasion during breast cancer progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...