Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Cell Mol Life Sci ; 81(1): 369, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39182194

ABSTRACT

Calcium-containing stones represent the most common form of kidney calculi, frequently linked to idiopathic hypercalciuria, though their precise pathogenesis remains elusive. This research aimed to elucidate the molecular mechanisms involved by employing urinary exosomal microRNAs as proxies for renal tissue analysis. Elevated miR-148b-5p levels were observed in exosomes derived from patients with kidney stones. Systemic administration of miR-148b-5p in rat models resulted in heightened urinary calcium excretion, whereas its inhibition reduced stone formation. RNA immunoprecipitation combined with deep sequencing identified miR-148b-5p as a suppressor of calcitonin receptor (Calcr) expression, thereby promoting urinary calcium excretion and stone formation. Mice deficient in Calcr in distal epithelial cells demonstrated elevated urinary calcium excretion and renal calcification. Mechanistically, miR-148b-5p regulated Calcr through the circRNA-83536/miR-24-3p signaling pathway. Human kidney tissue samples corroborated these results. In summary, miR-148b-5p regulates the formation of calcium-containing kidney stones via the circRNA-83536/miR-24-3p/Calcr axis, presenting a potential target for novel therapeutic interventions to prevent calcium nephrolithiasis.


Subject(s)
Calcium , Hypercalciuria , MicroRNAs , Nephrolithiasis , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Hypercalciuria/genetics , Hypercalciuria/metabolism , Hypercalciuria/pathology , Calcium/metabolism , Mice , Rats , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Male , Mice, Inbred C57BL , Kidney Calculi/metabolism , Kidney Calculi/genetics , Rats, Sprague-Dawley , Exosomes/metabolism , Exosomes/genetics , Female , Kidney/metabolism , Kidney/pathology , Mice, Knockout , Signal Transduction
2.
Mol Neurodegener ; 19(1): 58, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080744

ABSTRACT

BACKGROUND: It is not fully established whether plasma ß-amyloid(Aß)42/Aß40 and phosphorylated Tau181 (p-Tau181) can effectively detect Alzheimer's disease (AD) pathophysiology in older Chinese adults and how these biomarkers correlate with astrocyte reactivity, Aß plaque deposition, tau tangle aggregation, and neurodegeneration. METHODS: We recruited 470 older adults and analyzed plasma Aß42/Aß40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. Among them, 301, 195, and 70 underwent magnetic resonance imaging, Aß and tau positron emission tomography imaging. The plasma Aß42/Aß40 and p-Tau181 thresholds were defined as ≤0.0609 and ≥2.418 based on the receiver operating characteristic curve analysis using the Youden index by comparing Aß-PET negative cognitively unimpaired individuals and Aß-PET positive cognitively impaired patients. To evaluate the feasibility of using plasma Aß42/Aß40 (A) and p-Tau181 (T) to detect AD and understand how astrocyte reactivity affects this process, we compared plasma GFAP, Aß plaque, tau tangle, plasma NfL, hippocampal volume, and temporal-metaROI cortical thickness between different plasma A/T profiles and explored their relations with each other using general linear models, including age, sex, APOE-ε4, and diagnosis as covariates. RESULTS: Plasma A+/T + individuals showed the highest levels of astrocyte reactivity, Aß plaque, tau tangle, and axonal degeneration, and the lowest hippocampal volume and temporal-metaROI cortical thickness. Lower plasma Aß42/Aß40 and higher plasma p-Tau181 were independently and synergistically correlated with higher plasma GFAP and Aß plaque. Elevated plasma p-Tau181 and GFAP concentrations were directly and interactively associated with more tau tangle formation. Regarding neurodegeneration, higher plasma p-Tau181 and GFAP concentrations strongly correlated with more axonal degeneration, as measured by plasma NfL, and lower plasma Aß42/Aß40 and higher plasma p-Tau181 were related to greater hippocampal atrophy. Higher plasma GFAP levels were associated with thinner cortical thickness and significantly interacted with lower plasma Aß42/Aß40 and higher plasma p-Tau181 in predicting more temporal-metaROI cortical thinning. Voxel-wise imaging analysis confirmed these findings. DISCUSSION: This study provides a valuable reference for using plasma biomarkers to detect AD in the Chinese community population and offers novel insights into how astrocyte reactivity contributes to AD progression, highlighting the importance of targeting reactive astrogliosis to prevent AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Astrocytes , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Female , tau Proteins/metabolism , Male , Aged , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers/blood , Positron-Emission Tomography/methods , Aged, 80 and over , Middle Aged , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/blood , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/metabolism , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/metabolism , Plaque, Amyloid/pathology
3.
Article in English | MEDLINE | ID: mdl-38976036

ABSTRACT

PURPOSE: [18F]-D3FSP is a new ß-amyloid (Aß) PET imaging tracer designed to decrease nonspecific signals in the brain by reducing the formation of the N-demethylated product. However, its optimal reference region for calculating the standardized uptake value ratio (SUVR) and its relation to the well-established biomarkers of Alzheimer's disease (AD) are still unclear. METHODS: We recruited 203 participants from the Greater Bay Area Healthy Aging Brain Study (GHABS) to undergo [18F]-D3FSP Aß PET imaging. We analyzed plasma Aß42/Aß40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. We compared the standardized uptake value (SUV) of five reference regions (cerebellum, cerebellum cortex, brainstem/PONs, white matter, composite of the four regions above) and AD typical cortical region (COMPOSITE) SUVR among different clinical groups. The association of D3FSP SUVR with plasma biomarkers, imaging biomarkers, and cognition was also investigated. RESULTS: Brainstem/PONs SUV showed the lowest fluctuation across diagnostic groups, and COMPOSITE D3FSP SUVR had an enormous effect distinguishing cognitively impaired (CI) individuals from cognitively unimpaired (CU) individuals. COMPOSITE SUVR (Referred to brainstem/PONs) was positively correlated with p-Tau181 (p < 0.001), GFAP (p < 0.001), NfL (p = 0.014) in plasma and temporal-metaROI tau deposition (p < 0.001), and negatively related to plasma Aß42/Aß40 (p < 0.001), temporal-metaROI cortical thickness (p < 0.01), residual hippocampal volume (p < 0.001) and cognition (p < 0.001). The voxel-wise analysis replicated these findings. CONCLUSION: This study suggests brainstem/PONs as an optimal reference region for calculating D3FSP SUVR to quantify cortical Aß plaques in the brain. [18F]-D3FSP could distinguish CI from CU and strongly correlates with well-established plasma biomarkers, tau PET, neurodegeneration, and cognitive decline. However, future head-to-head comparisons of [18F]-D3FSP PET images with other validated Aß PET tracers or postmortem results are crucial.

4.
J Med Chem ; 67(15): 13491-13506, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39069676

ABSTRACT

Prostate-specific membrane antigen (PSMA) is an excellent target for cancer detection and therapy. Hypoxia is prevalent in solid tumors, and various nitroimidazole (NI) radioligands can be trapped inside hypoxic cells for diagnosis and therapy. To enhance tumor uptake and retention, we designed bivalent agents (compounds 1-8) incorporating a hypoxia-sensitive NI-moiety and a PSMA-targeting group. Ligands 1-8 were successfully prepared and labeled with 68Ga or 177Lu. Among them, [68Ga]Ga-8 ([68Ga]Ga-AAZTA-NI-PSMA-093) demonstrated significantly higher cellular accumulation under hypoxic conditions than under normoxic conditions, suggesting hypoxia-selective trapping by the introduction of NI group. PET/CT imaging at 60 min postinjection of [68Ga]Ga-8 revealed high tumor uptake (SUVmax: 10.68%ID/mL) in the tumor-bearing mice model. SPECT/CT imaging of [177Lu]Lu-8 at 24 and 48 h postinjection demonstrated excellent accumulation and retention. Preliminary studies indicate that [68Ga]Ga/[177Lu]Lu-8 may be promising bivalent agents targeting hypoxia and PSMA binding for diagnosis and radiotherapy.


Subject(s)
Antigens, Surface , Gallium Radioisotopes , Glutamate Carboxypeptidase II , Lutetium , Prostatic Neoplasms , Male , Gallium Radioisotopes/chemistry , Animals , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Humans , Glutamate Carboxypeptidase II/metabolism , Mice , Antigens, Surface/metabolism , Lutetium/chemistry , Radioisotopes/chemistry , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Cell Line, Tumor , Tissue Distribution , Mice, Nude , Tumor Hypoxia
5.
Article in English | MEDLINE | ID: mdl-38910166

ABSTRACT

BACKGROUND: The aim of the present study was to develop a novel 64Cu-labeled cyclic peptide ([64Cu]Cu-FAP-NOX) that targets fibroblast activation protein (FAP) and may offer advantages in terms of image contrast, imaging time window, and low uptake in normal tissues. METHODS: The novel cyclic peptide featuring with a N-oxalyl modified tail was constructed and conjugated to NOTA for 64Cu labeling. Biochemical and cellular assays were performed with A549.hFAP cells. The performance of [64Cu]Cu-FAP-NOX was compared to that of two established tracers ([64Cu]Cu-FAPI-04 and [68Ga]Ga-FAP-2286) and three different NOTA-conjugates in HEK-293T.hFAP xenograft mice using micro-PET imaging. Ex vivo biodistribution studies were performed to confirm the FAP specificity and to validate the PET data. Furthermore, a first-in-human study of this novel tracer was conducted on one patient with lung cancer. RESULTS: Compared to [64Cu]Cu-FAPI-04, [64Cu]Cu-FAP-NOX demonstrated faster and higher rates of cellular uptake and internalization in A549.hFAP cells, but lower rates of cellular efflux. All six radiotracers were rapidly taken up by the tumor within the first 4 h post-injection. However, [64Cu]Cu-FAP-NOX had more intense tumor accumulation and slower washout from the target. The ratios of the tumor to normal tissue (including kidneys and muscles) increased significantly over time, with [64Cu]Cu-FAP-NOX reaching the highest ratio among all tracers. In the patient, [64Cu]Cu-FAP-NOX PET showed a comparable result to FDG PET in the primary malignant lesion while exhibiting higher uptake in pleural metastases, consistent with elevated FAP expression as confirmed by immunohistochemistry. CONCLUSION: [64Cu]Cu-FAP-NOX is a promising FAP-targeted tracer with a highly flexible imaging time window, as evidenced by preclinical evaluation encompassing biodistribution and micro-PET studies, along with a successful patient application. Furthermore, [64Cu]Cu-FAP-NOX showed enhanced image contrast and favorable pharmacokinetic properties for FAP PET imaging, warranting translation into large cohort studies.

6.
Mol Pharm ; 21(7): 3256-3267, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856975

ABSTRACT

Prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer cells can serve as a target for imaging and radioligand therapy (RLT). Previously, [68Ga]Ga-P16-093, containing a Ga(III) chelator, N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), displayed excellent PSMA-targeting properties and showed a high tumor uptake and retention useful for diagnosis in prostate cancer patients. Recently, [177Lu]Lu-PSMA-617 has been approved by the U.S. food and drug administration (FDA) for the treatment of prostate cancer patients. Derivatives of PSMA-093 using AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), as the chelator, were designed as alternative agents forming complexes with both diagnostic and therapeutic radiometals, such as gallium-68 (log K = 22.18) or lutetium-177 (log K = 21.85). The aim of this study is to evaluate AAZTA-Gly-O-(methylcarboxy)-Tyr-Phe-Lys-NH-CO-NH-Glu (designated as AZ-093, 1) leading to a gallium-68/lutetium-177 theranostic pair as potential PSMA targeting agents. Synthesis of the desired precursor, AZ-093, 1, was effectively accomplished. Labeling with either [68Ga]GaCl3 or [177Lu]LuCl3 in a sodium acetate buffer solution (pH 4-5) at 50 °C in 5 to 15 min produced either [68Ga]Ga-1 or [177Lu]Lu-1 with high yields and excellent radiochemical purities. Results of in vitro binding studies, cell uptake, and retention (using PSMA-positive prostate carcinoma cells line, 22Rv1-FOLH1-oe) were comparable to that of [68Ga]Ga-P16-093 and [177Lu]Lu-PSMA-617, respectively. Specific cellular uptake was determined with or without the competitive blocking agent (2 µM of "cold" PSMA-11). Cellular binding and internalization showed a time-dependent increase over 2 h at 37 °C in the PSMA-positive cells. The cell uptakes were completely blocked by the "cold" PSMA-11 suggesting that they are competing for the same PSMA binding sites. In the mouse model with implanted PSMA-positive tumor cells, both [68Ga]Ga-1 and [177Lu]Lu-1 displayed excellent uptake and retention in the tumor. Results indicate that [68Ga]Ga/[177Lu]Lu-1 (68Ga]Ga/[177Lu]Lu-AZ-093) is potentially useful as PSMA-targeting agent for both diagnosis and radiotherapy of prostate cancer.


Subject(s)
Antigens, Surface , Gallium Radioisotopes , Glutamate Carboxypeptidase II , Lutetium , Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Lutetium/chemistry , Antigens, Surface/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Cell Line, Tumor , Radioisotopes/chemistry , Animals , Chelating Agents/chemistry , Prostate-Specific Antigen/metabolism , Tissue Distribution , Mice , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Positron Emission Tomography Computed Tomography/methods
7.
Alzheimers Res Ther ; 16(1): 84, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627753

ABSTRACT

INTRODUCTION: The Guangdong-Hong Kong-Macao Greater-Bay-Area of South China has an 86 million population and faces a significant challenge of Alzheimer's disease (AD). However, the characteristics and prevalence of AD in this area are still unclear due to the rarely available community-based neuroimaging AD cohort. METHODS: Following the standard protocols of the Alzheimer's Disease Neuroimaging Initiative, the Greater-Bay-Area Healthy Aging Brain Study (GHABS) was initiated in 2021. GHABS participants completed clinical assessments, plasma biomarkers, genotyping, magnetic resonance imaging (MRI), ß-amyloid (Aß) positron emission tomography (PET) imaging, and tau PET imaging. The GHABS cohort focuses on pathophysiology characterization and early AD detection in the Guangdong-Hong Kong-Macao Greater Bay Area. In this study, we analyzed plasma Aß42/Aß40 (A), p-Tau181 (T), neurofilament light, and GFAP by Simoa in 470 Chinese older adults, and 301, 195, and 70 had MRI, Aß PET, and tau PET, respectively. Plasma biomarkers, Aß PET, tau PET, hippocampal volume, and temporal-metaROI cortical thickness were compared between normal control (NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia groups, controlling for age, sex, and APOE-ε4. The prevalence of plasma A/T profiles and Aß PET positivity were also determined in different diagnostic groups. RESULTS: The aims, study design, data collection, and potential applications of GHABS are summarized. SCD individuals had significantly higher plasma p-Tau181 and plasma GFAP than the NC individuals. MCI and dementia patients showed more abnormal changes in all the plasma and neuroimaging biomarkers than NC and SCD individuals. The frequencies of plasma A+/T+ (NC; 5.9%, SCD: 8.2%, MCI: 25.3%, dementia: 64.9%) and Aß PET positivity (NC: 25.6%, SCD: 22.5%, MCI: 47.7%, dementia: 89.3%) were reported. DISCUSSION: The GHABS cohort may provide helpful guidance toward designing standard AD community cohorts in South China. This study, for the first time, reported the pathophysiology characterization of plasma biomarkers, Aß PET, tau PET, hippocampal atrophy, and AD-signature cortical thinning, as well as the prevalence of Aß PET positivity in the Guangdong-Hong Kong-Macao Greater Bay Area of China. These findings provide novel insights into understanding the characteristics of abnormal AD pathological changes in South China's older population.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Healthy Aging , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Positron-Emission Tomography , Biomarkers , tau Proteins , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology
8.
J Med Chem ; 67(6): 4793-4803, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38450559

ABSTRACT

Bone metastasis in cancer patients is a major disease advancement for various types of cancer. Previously, [68Ga]Ga-HBED-CC-bisphosphonate ([68Ga]Ga-P15-041) showed excellent bone uptake and efficient detection of bone metastasis in patients. To accommodate different α- or ß--emitting metals for radionuclide therapy, a novel DOTA-HBED-CC-bisphosphonate (P15-073, 1) was prepared and the corresponding [68Ga]Ga-1 and [177Lu]Lu-1 were successfully synthesized in high yields and purity. Gallium-68 conjugation to HBED-CC at room temperature and lutetium-177 conjugation to DOTA at 95 °C were verified in model compounds through secondary mass confirmation. These bisphosphonates, [68Ga]Ga-1 and [177Lu]Lu-1, displayed high binding affinity to hydroxyapatite in vitro. After an iv injection, it showed excellent uptake in the spine of normal mice, and micro-PET/CT imaging of nude mice model of bone metastasis showed high bone uptake in tumor tissue. The results indicated that [68Ga]Ga/[177Lu]Lu-1 holds promise as a theranostic radioligand agent for managing cancer bone metastases.


Subject(s)
Bone Neoplasms , Edetic Acid/analogs & derivatives , Gallium Radioisotopes , Heterocyclic Compounds, 1-Ring , Humans , Mice , Animals , Positron Emission Tomography Computed Tomography , Diphosphonates/therapeutic use , Precision Medicine , Mice, Nude , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy
9.
EJNMMI Radiopharm Chem ; 9(1): 15, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393404

ABSTRACT

BACKGROUND: Recent advancements in positron emission tomograph (PET) using prostate specific membrane antigen (PSMA)-targeted radiopharmaceuticals have changed the standard of care for prostate cancer patients by providing more accurate information during staging of primary and recurrent disease. [68Ga]Ga-P16-093 is a new PSMA-PET radiopharmaceutical that demonstrated superior imaging performance in recent head-to-head studies with [68Ga]Ga-PSMA-11. To improve the availability of this new PSMA PET imaging agent, [18F]AlF-P16-093 was developed. The 18F-analog [18F]AlF-P16-093 has been synthesized manually at low activity levels using [18F]AlF2+ and validated in pre-clinical models. This work reports the optimization of the production of > 15 GBq of [18F]AlF-P16-093 using a custom automated synthesis platform. RESULTS: The sensitivity of the radiochemical yield of [18F]AlF-P16-093 to reaction parameters of time, temperature and reagent amounts was investigated using a custom automated system. The automated system is a low-cost, cassette-based system designed for 1-pot syntheses with flow-controlled solid phase extraction (SPE) workup and is based on the Raspberry Pi Zero 2 microcomputer/Python3 ecosystem. The optimized none-decay-corrected yield was 52 ± 4% (N = 3; 17.5 ± 2.2 GBq) with a molar activity of 109 ± 14 GBq/µmole and a radiochemical purity of 98.6 ± 0.6%. Run time was 30 min. A two-step sequence was used: SPE-purified [18F]F- was reacted with 80 nmoles of freeze-dried AlCl3·6H2O at 65 °C for 5 min followed by reaction with 160 nmoles of P16-093 ligand at 40 °C for 4 min in a 1:1 mixture of ethanol:0.5 M pH 4.5 NaOAc buffer. The mixture was purified by SPE (> 97% recovery). The final product formulation (5 mM pH 7 phosphate buffer with saline) exhibited a rate of decline in radiochemical purity of ~ 1.4%/h which was slowed to ~ 0.4%/h when stored at 4 °C. CONCLUSION: The optimized method using a custom automated system enabled the efficient (> 50% none-decay-corrected yield) production of [18F]AlF-P16-093 with high radiochemical purity (> 95%). The method and automation system are simple and robust, facilitating further clinical studies with [18F]AlF-P16-093.

10.
Clin Nucl Med ; 49(6): e295-e297, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38377375

ABSTRACT

ABSTRACT: We compared 18 F-FAPI and 18 F-FDG PET/CT findings of metastatic perivacular epitheliod cell tumor in a 23-year-old woman. Apart from showing strong uptake of a left upper lung mass that showed moderate uptake on 18 F-FDG, 18 F-FAPI PET/CT additionally presented hypermetabolism in diffuse multifocal lesion throughout the body. This case suggests that 18 F-FAPI PET/CT might play a more beneficial role than 18 F-FDG PET/CT in identifying and assessing the extent of perivascular epithelioid cell tumors.


Subject(s)
Neoplasm Metastasis , Perivascular Epithelioid Cell Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Female , Perivascular Epithelioid Cell Neoplasms/diagnostic imaging , Perivascular Epithelioid Cell Neoplasms/pathology , Young Adult , Fluorodeoxyglucose F18
11.
Eur J Nucl Med Mol Imaging ; 51(7): 2124-2133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38285206

ABSTRACT

PURPOSE: This paper discusses the optimization of pharmacokinetic modelling and alternate simplified quantification method for [18F]AlF-P16-093, a novel tracer for in vivo imaging of prostate cancer. METHODS: Dynamic PET/CT scans were conducted on eight primary prostate cancer patients, followed by a whole-body scan at 60 min post-injection. Time-activity curves (TACs) were obtained by drawing volumes of interest for primary prostatic and metastatic lesions. Optimal kinetic modelling involved evaluating three compartmental models (1T2K, 2T3K, and 2T4K) accounting for fractional blood volume (Vb). The simplified quantification method was then determined based on the correlation between the static uptake measure and total distribution volume (Vt) obtained from the optimal pharmacokinetic analysis. RESULTS: In total, 17 intraprostatic lesions, 10 lymph nodes, and 36 osseous metastases were evaluated. Visually, the contrast of the tumor increased and showed the steepest incline within the first few minutes, whereas background activity decreased over time. Full pharmacokinetic analysis revealed that a reversible two-compartmental (2T4K) model is the preferred kinetic model for the given tracer. The kinetic parameters K1, k3, Vb, and Vt were all significantly higher in lesions when compared with normal tissue (P < 0.01). Several simplified protocols were tested for approximating comprehensive dynamic quantification in tumors, with image-based SURmean (the ratio of tumor SUVmean to blood SUVmean) within the 28-34 min window found to be sufficient for approximating the total distribution Vt values (R2 = 0.949, P < 0.01). Both Vt and SURmean correlated significantly with the total serum prostate-specific antigen (tPSA) levels (P < 0.01). CONCLUSIONS: This study introduced an optimized pharmacokinetic modelling approach and a simplified acquisition method for [18F]AlF-P16-093, a novel PSMA-targeted radioligand, highlighting the feasibility of utilizing one static PET imaging (between 30 and 60 min) for the diagnosis of prostate cancer. Note that the image-derived input function in this study may not reflect the true corrected plasma input function, therefore the interpretation of the associated kinetic parameter estimates should be done with caution.


Subject(s)
Models, Biological , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Aged , Positron Emission Tomography Computed Tomography/methods , Middle Aged , Radiopharmaceuticals/pharmacokinetics , Kinetics , Lysine/analogs & derivatives , Urea/analogs & derivatives
12.
Eur J Nucl Med Mol Imaging ; 51(6): 1753-1762, 2024 May.
Article in English | MEDLINE | ID: mdl-38212531

ABSTRACT

PURPOSE: This is a first-in-human study to evaluate the radiation dosimetry of a new prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical, [18F]AlF-P16-093, and also initial investigation of its ability to detect PSMA-positive tumors using PET scans in a cohort of prostate cancer (PCa) patients. METHODS: The [18F]AlF-P16-093 was automatically synthesized with a GE TRACERlab. A total of 23 patients with histopathologically proven PCa were prospectively enrolled. Dosimetry and biodistribution study investigations were carried out on a subset of six (6) PCa patients, involving multiple time-point scanning. The mean absorbed doses were estimated with PMOD and OLINDA software. RESULTS: [18F]AlF-P16-093 was successfully synthesized, and radiochemical purity was > 95%, and average labeling yield was 36.5 ± 8.3% (decay correction, n = 12). The highest tracer uptake was observed in the kidneys, spleen, and liver, contributing to an effective dose of 16.8 ± 1.3 µSv/MBq, which was ~ 30% lower than that of [68Ga]Ga-P16-093. All subjects tolerated the PET examination well, and no reportable side-effects were observed. The PSMA-positive tumors displayed rapid uptake, and they were all detectable within 10 min, and no additional lesions were observed in the following multi-time points scanning. Each patient had at least one detectable tumor lesion, and a total of 356 tumor lesions were observed, including intraprostatic, lymph node metastases, bone metastases, and other soft tissue metastases. CONCLUSIONS: We report herein a streamlined method for high yield synthesis of [18F]AlF-P16-093. Preliminary study in PCa patients has demonstrated its safety and acceptable radiation dosimetry. The initial diagnostic study indicated that [18F]AlF-P16-093 PET/CT is efficacious and potentially useful for a widespread application in the diagnosis of PCa patients.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Radiometry , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Glutamate Carboxypeptidase II/metabolism , Middle Aged , Antigens, Surface/metabolism , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes/chemistry , Aged, 80 and over , Positron Emission Tomography Computed Tomography
13.
Respir Res ; 24(1): 270, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932744

ABSTRACT

BACKGROUND: Right heart failure (RHF) is a complication of pulmonary hypertension (PH) and increases the mortality independently of the underlying disease. However, the process of RHF development and progression is not fully understood. We aimed to develop effective approaches for early diagnosis and precise evaluation of RHF. METHODS: Right ventricle (RV) pressure overload was performed via pulmonary artery banding (PAB) surgery in Sprague-Dawley (SD) rats to induce RHF. Echocardiography, right heart catheterization, histological staining, fibroblast activation protein (FAP) immunofluorescence and 18 F-labelled FAP inhibitor-42 ([18 F] -FAPI-42) positron emission tomography/computed tomography (PET/CT) were performed at day 3, week 1, 2, 4 and 8 after PAB. RNA sequencing was performed to explore molecular alterations between PAB and sham group at week 2 and week 4 after PAB respectively. RESULTS: RV hemodynamic disorders were aggravated, and RV function was declined based on right heart catheterization and echocardiography at week 2, 4 and 8 after PAB. Progressive cardiac hypertrophy, fibrosis and capillary rarefaction could be observed in RV from 2 to 8 weeks after PAB. RNA sequencing indicated 80 upregulated genes and 43 downregulated genes in the RV at both week 2 and week 4 after PAB; Gene Ontology (GO) analysis revealed that fibrosis as the most significant biological process in the RV under pressure overload. Immunofluorescence indicated that FAP was upregulated in the RV from week 2 to week 8 after PAB; and [18 F] -FAPI-42 PET/CT revealed FAPI uptake was significantly higher in RV at week 2 and further increased at week 4 and 8 after PAB. CONCLUSION: RV function is progressively declined with fibrosis as the most prominent molecular change after pressure overload, and [18 F] -FAPI-42 PET/CT is as sensitive and accurate as histopathology in RV fibrosis evaluation.


Subject(s)
Heart Failure , Ventricular Dysfunction, Right , Rats , Animals , Heart Ventricles/pathology , Rats, Sprague-Dawley , Positron Emission Tomography Computed Tomography , Fibrosis
14.
J Med Chem ; 66(17): 12602-12613, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37670407

ABSTRACT

Prostate-specific membrane antigen (PSMA) is an excellent target for imaging and radionuclide therapy of prostate cancer. Recently, [177Lu]Lu-PSMA-617 (Pluvicto) was approved by the FDA for radionuclide therapy. To develop hetero-bivalent agents targeting both PSMA and bone metastasis, [177Lu]Lu-P17-079 ([177Lu]Lu-1) and [177Lu]Lu-P17-081 ([177Lu]Lu-2) were prepared. In vivo biodistribution studies of [177Lu]Lu-PSMA-617, [177Lu]Lu-1, and [177Lu]Lu-2 in mice bearing PC3-PIP (PSMA positive) tumor showed high uptake in PSMA-positive tumor (14.5, 14.7, and 11.3% ID/g at 1 h, respectively) and distinctively different bone uptakes (0.52, 6.52, and 5.82% ID/g at 1 h, respectively). PET imaging using [68Ga]Ga-P17-079 ([68Ga]Ga-1) in the same mouse model displayed excellent images confirming the expected dual-targeting to PSMA-positive tumor and bone. Results suggest that [177Lu]Lu-P17-079 ([177Lu]Lu-1) is a promising candidate for further development as a hetero-bivalent radionuclide therapy agent targeting both PSMA expression and bone metastases for the treatment of prostate cancer.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Animals , Mice , Radioisotopes/therapeutic use , Lutetium/therapeutic use , Gallium Radioisotopes , Tissue Distribution , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy
15.
Mol Pharm ; 20(4): 2159-2169, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36942924

ABSTRACT

Fibroblast activation protein (FAP) is selectively expressed in tumors and highly important for maintaining the microenvironment in malignant tumors. Radioisotope-labeled FAP inhibitors (FAPIs) were proven to be useful for diagnosis and radionuclide therapy of cancer and are under active clinical investigations. Ga-HBED complex displays a higher in vivo stability constant (log KGaL: 38.5), compared to that of Ga-DOTA (log KGaL: 21.3). Such advantage in stability constant suggests that it may be useful for development of alternative FAPI imaging agents. In this study, previously reported [68Ga]Ga-DOTA-FAPI-02 and -04 were converted to the corresponding [68Ga]Ga-HBED-CC-FAPI-02 and -04 derivatives ([68Ga]Ga-4, [68Ga]Ga-5, [68Ga]Ga-6, and [68Ga]Ga-7). It was found that substituting the DOTA chelating group with HBED-CC led to several unique and desirable tumor-targeting properties: (1) robust, fast, and high yield labeling─readily adaptable to a kit formulation; (2) high stabilities in vitro; (3) excellent FAP binding affinities (IC50 ranging between 4 and 7 nM) and improved cell uptake and retention (in HT1080 (FAP+) cells); and (4) excellent selective in vivo tumor uptake in nude mice bearing U87MG tumor. It appeared that Ga(III) chelation with HBED-CC improved the in vivo kinetics favoring higher tumor uptake and retention compared to the corresponding Ga-DOTA complex. Out of the four tested ligands the new [68Ga]Ga-HBED-CC-FAPI dimer, [68Ga]Ga-6, displayed the best tumor localization properties, and further studies are warranted to demonstrate that it is an alternative FAP imaging agent for cancer patients.


Subject(s)
Gallium Radioisotopes , Positron-Emission Tomography , Animals , Mice , Gallium Radioisotopes/chemistry , Positron-Emission Tomography/methods , Mice, Nude , Cell Line, Tumor , Chelating Agents , Positron Emission Tomography Computed Tomography
16.
J Med Chem ; 65(19): 13001-13012, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36103652

ABSTRACT

Prostate-specific membrane antigen (PSMA) is a promising target for the diagnosis and radionuclide therapy of prostate cancer. This study reports conversion of a previously reported 68Ga-imaging agent, [68Ga]Ga-P16-093, to a Lu-177 radionuclide therapeutic agent. Substitution of the HBED-CC metal chelating group with DOTA(GA)2 led to P17-087 (4) and P17-088 (7). Both agents showed excellent PSMA binding affinity (IC50 = 10-30 nM) comparable to that of recently FDA-approved [177Lu]Lu-PSMA-617 (Pluvicto). Biodistribution studies in PSMA expressing tumor bearing mice showed that [177Lu]Lu-4 exhibited very high tumor uptake and a fast blood clearance similar to those of [177Lu]Lu-PSMA-617. Conversely, [177Lu]Lu-7, containing an albumin binder, extended its blood half-life and exhibited significantly higher uptake and longer tumor residence time than [177Lu]Lu-4 and [177Lu]Lu-PSMA-617. The switch from chelator HBED-CC to DOTA(GA)2 and the switch from the imaging isotope gallium-68 to the therapeutic isotope lutetium-177 have successfully transformed a PSMA-targeting agent from diagnosis to promising radionuclide therapeutic agents.


Subject(s)
Lutetium , Prostatic Neoplasms , Albumins/metabolism , Animals , Antigens, Surface/metabolism , Cell Line, Tumor , Chelating Agents/therapeutic use , Edetic Acid/analogs & derivatives , Gallium Radioisotopes , Glutamate Carboxypeptidase II/metabolism , Humans , Ligands , Lutetium/therapeutic use , Male , Mice , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Radioisotopes/therapeutic use , Tissue Distribution
17.
Front Bioeng Biotechnol ; 10: 920766, 2022.
Article in English | MEDLINE | ID: mdl-35957641

ABSTRACT

Recently, fibroblast activation protein (FAP), an overexpressed transmembrane protein of activated fibroblast in pulmonary fibrosis, has been considered as the new target for diagnosing and treating pulmonary fibrosis. In this work, mesoporous polydopamine (MPDA), which is facile prepared and easily modified, is developed as a carrier to load antifibrosis drug pirfenidone (PFD) and linking FAP inhibitor (FAPI) to realize lesion-targeted drug delivery for pulmonary fibrosis therapy. We have found that PFD@MPDA-FAPI is well biocompatible and with good properties of antifibrosis, when ICG labels MPDA-FAPI, the accumulation of the nanodrug at the fibrosis lung in vivo can be observed by NIR imaging, and the antifibrosis properties of PFD@MPDA-FAPI in vivo were also better than those of pure PFD and PFD@MPDA; therefore, the easily produced and biocompatible nanodrug PFD@MPDA-FAPI developed in this study is promising for further clinical translations in pulmonary fibrosis antifibrosis therapy.

18.
Nucl Med Biol ; 102-103: 87-96, 2021.
Article in English | MEDLINE | ID: mdl-34695640

ABSTRACT

OBJECTIVE: Glucagon-like peptide-1 receptor (GLP1R) specifically expressed on the surface of pancreatic ß-cells and insulinoma, is a potential biomarker for imaging ß-cell mass (BCM). In this study, two new 68Ga-labelled GLP1R targeting agents were prepared and their biological properties for imaging BCM and insulinoma were evaluated. METHODS: [68Ga]Ga-HBED-CC-MAL-Cys39-exendin-4 ([68Ga]Ga-4) and its dimer ([68Ga]Ga-5) were synthesized from corresponding precursors. Cell uptake studies were evaluated in INS-1 cells. Biodistribution and microPET studies were performed in male normal Sprague-Dawley rats, diabetic rats and insulinoma xenograft NOD/SCID mice. RESULTS: [68Ga]Ga-4 and [68Ga]Ga-5 were efficiently radiolabelled by a simple one-step reaction without purification leading to high radiochemical yields and radiochemical purities (both >95%, decay corrected, n = 6, molar activity 15 GBq/µmol). They both showed excellent stability (~95%) in phosphate-buffered saline, pH 7.4, and in rat serum (~90%) for 2 h. Biodistribution studies and small animal PET/CT imaging showed that [68Ga]Ga-4 displayed specific uptake in rat pancreas and mouse insulinoma, and a reduced uptake in the pancreas of diabetic rat was observed (~62% reduction). Notably, it exhibited a rapid time-to-peak pancreatic uptake (0.96 ± 0.19%ID/g in 15 min) and fast clearance from the kidney (42% clearance in 30 min). Results suggested a favorable in vivo kinetics for human imaging studies. CONCLUSIONS: [68Ga]Ga-4 targeting GLP1R of pancreatic ß-cells may be a potentially useful PET agent and a suitable candidate for further structural modification studies. This agent has demonstrated several advantages, rapid time-to-peak pancreatic uptake and faster clearance from the kidney, factors may enhance diagnosis of diabetes and insulinoma.


Subject(s)
Insulinoma
19.
ACS Med Chem Lett ; 12(7): 1086-1092, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34267878

ABSTRACT

[18F]AV-45 (florbetapir f18, Amyvid) is an FDA-approved PET imaging agent targeting Aß plaques in the brain for diagnosis of Alzheimer's disease (AD). Its metabolites led to a high background in the brain and large bone uptake of [18F]F-, produced from dealkylation of the PEG chain. To slow down the in vivo metabolism, we report the design, synthesis, and evaluation of a highly deuterated derivative, [18F]D15FSP, and compared it with N-methyl-deuterated [18F]D3FSP and nondeuterated [18F]AV-45. D15FSP displayed excellent binding affinity (K i = 7.52 nM) to Aß aggregates. In vitro autoradiography of [18F]D15FSP, [18F]D3FSP, and [18F]AV-45 showed excellent binding to Aß plaques in human AD brain sections. Biodistribution studies displayed lower bone uptake at 120 min for [18F]D15FSP compared to that for [18F]D3FSP and [18F]AV-45 (1.44 vs 4.23 and 4.03%ID/g, respectively). As the highly deuterated [18F]D15FSP displayed excellent Aß binding affinity, high initial brain penetration, and lower bone retention, it might be suitable for PET imaging in detecting Aß plaques.

20.
Bioconjug Chem ; 32(5): 1017-1026, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33872489

ABSTRACT

Prostate-specific membrane antigen (PSMA)-targeted radioligands have played an increasing role in the diagnosis of prostate cancer. [68Ga]Ga-P16-093 is a PSMA-targeting agent for positron emission tomography imaging, currently under a Phase 2 clinical trial. In the present study, P16-093 was labeled with 18F via [18F]AlF2+ complex formation, and the biological properties of [18F]AlF-P16-093 were evaluated. Optimization of radiolabeling efficiency was performed by testing a series of parameters, including the amount of free ligand; the amount of Al3+; and the influence of solvent, pH, temperature, reaction time, and reaction volume. Optimal labeling results were achieved at pH 5 by reacting at 60 °C for 15 min in a vial containing 74-370 MBq of [18F]fluoride, 46 nmol of P16-093, 40 nmol of AlCl3·6 H2O, and 50% EtOH. [18F]AlF-P16-093 was prepared with a non-decay-corrected radiochemical yield of 54.4 ± 4.4% (n = 9) within 30 min (final radiochemical purity ≥95%). In vitro, [18F]AlF-P16-093 showed PSMA-specific high uptakes in PIP-PC3 cells. The binding affinity of [18F]AlF-P16-093 to PSMA was determined as Kd of 12.4 ± 2.0 nM. The tumor uptake in mice with a xenografted PSMA-expressing PIP-PC3 tumor was high (18.8 ± 5.14% ID/g at 1 h postinjection) and retained without washout for 2 h. In addition, tumor uptake was almost completely blocked by coinjecting a PSMA inhibitor, 2-PMPA. The bone activity at 1 h post injection was higher with [18F]AlF-P16-093 (2.83 ± 0.49% ID/g) in comparison to that of [68Ga]Ga-P16-093 (0.26 ± 0.07% ID/g). In summary, an efficient and simple radiosynthesis of [18F]AlF-P16-093 was achieved. [18F]AlF-P16-093 showed desirable in vivo pharmacokinetics and excellent PSMA-targeting properties for imaging PSMA expression in prostate cancer.


Subject(s)
Antigens, Surface/chemistry , Glutamate Carboxypeptidase II/chemistry , Molecular Imaging/methods , Humans , Isotope Labeling , Male , PC-3 Cells , Prostatic Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL