Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 930: 172895, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38697545

ABSTRACT

The widespread presence of fluoride in water, food, and the environment continues to exacerbate the impact of fluoride on the male reproductive health. However, as a critical component of the male reproductive system, the intrinsic mechanism of fluoride-induced cauda epididymis damage and the role of miRNAs in this process are still unclear. This study established a mouse fluorosis model and employed miRNA and mRNA sequencing; Evans blue staining, Oil Red O staining, TEM, immunofluorescence, western blotting, and other technologies to investigate the mechanism of miRNA in fluoride-induced cauda epididymal damage. The results showed that fluoride exposure increased the fluoride concentration in the hard tissue and cauda epididymis, altered the morphology and ultrastructure of the cauda epididymis, and reduced the motility rate, normal morphology rate, and hypo-osmotic swelling index of the sperm in the cauda epididymis. Furthermore, sequencing results revealed that fluoride exposure resulted in differential expression of 17 miRNAs and 4725 mRNAs, which were primarily enriched in the biological processes of tight junctions, inflammatory response, and lipid metabolism, with miR-742-3p, miR-141-5p, miR-878-3p, and miR-143-5p serving as key regulators. Further verification found that fluoride damaged tight junctions, raised oxidative stress, induced an inflammatory response, increased lipid synthesis, and reduced lipid decomposition and transport in the cauda epididymis. This study provided a theoretical basis for developing miRNA as potential diagnostic markers and therapeutic target drugs for this injury.


Subject(s)
Epididymis , Fluorides , MicroRNAs , RNA, Messenger , Male , Animals , MicroRNAs/metabolism , Fluorides/toxicity , Mice , Epididymis/drug effects , Epididymis/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
J Hazard Mater ; 465: 133411, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38181596

ABSTRACT

Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.


Subject(s)
Fluorides , Mitophagy , Humans , Mice , Animals , Fluorides/pharmacology , Calcium/metabolism , Protein Kinases/metabolism , Protein Kinases/pharmacology , Mitochondria , Ubiquitin-Protein Ligases , Apoptosis , Dietary Supplements
3.
Chem Biol Interact ; 385: 110719, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37739047

ABSTRACT

Fluoride (F), widely present in water and food, poses a serious threat to liver health, and oxidative damage and mitochondrial damage are its main causes. As a natural mitochondrial protector and antioxidant, α-lipoic acid (ALA)'s alleviating effect on fluorosis liver injury and its underlying mechanism are still unclear. Therefore, this study established a fluorosis ALA intervention mice model to explore the mechanism of mitochondrial biogenesis, mitochondrial dynamics, and Wnt/Ca2+ pathway in ALA attenuating fluorosis liver injury. The results showed that ALA mitigated F-induced weight loss, hepatic structural and functional damage, hepatocytes mitochondrial damage, and decreased antioxidant levels. However, ALA did not reduce F accumulation in the femur. Further mRNA and protein detection results showed that F increased the expression levels of key genes in the mitochondrial fission (Drp1, Mff, and Fis1), mitophagy (Parkin, Pink1, and Prdx3), Wnt/Ca2+ pathway (Wnt5a and CaMK2), and rised the number and intensity of fluorescent spots of Drp1, but decreased the expression levels of key genes in the mitochondrial biogenesis (Sirt1, Sirt3, and PGC-1α) and fusion (OPA1, Mfn2, and Mfn1), and reduced the number and intensity of fluorescent spots of PGC-1α in the liver. However, the intervention of ALA relieved the F-induced changes in the expressions of the above genes. In conclusion, ALA mitigated F-induced hepatic injury through enhancing antioxidant capacity and inhibiting Wnt/Ca2+ pathway to improve mitochondrial biogenesis and dynamics disturbance. This study further reveals the hepatotoxic mechanism of F and the protective mechanism of ALA, and provides a theoretical basis for ALA as a potential preventive and palliative agent for F-induced hepatotoxic injury.

4.
Sci Total Environ ; 884: 163616, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37086998

ABSTRACT

Fluoride (F) is usually treated as a hazardous material, and F-caused public health problem has attracted global attention. Previous studies demonstrate that interleukin-17A (IL-17A) plays a crucial role in F-elicited autoimmune orchitis and self-recovery reverses F-induced testicular toxicity to some extent, but these basic mechanisms remain unclear. Thus, we established a 180 d F exposure model of wild type (WT) mice and IL-17A knockout mice (C57BL/6 J background), and 60 d & 120 d self-recovery model based on F exposure model of WT mice, and used various techniques like qRT-PCR, western blot, immunohistochemistry and ELISA to further explore the mechanism of F-induced autoimmune reaction, the role of IL-17A in it and the reversibility of F-caused toxicity in testis. The results indicated that F exposure for 180 d caused the decreased sperm quality, the damaged testis histopathology, the enhanced mRNA and protein expression levels of inflammatory cytokines, the changes of autoantibody such as the appearance and increased content of anti-testicular autoantibodies in sera and the autoantibody deposition in testis, the alterations of autoimmune related genes containing the decreased mRNA and protein expressions of AIRE and FOXP3 with an increase of MHCII, and the reduced protein expressions of CTLA4, and the activation of IL-17A signaling cascade like the elevated mRNA and protein expressions of IL-17A, Act1, NF-κB, AP-1 and CEBPß, and the increased protein expressions of IL-17RC, with a decrease of IκBα. After IL-17A knockout, 29 of 35 F-induced changes were alleviated. In two self-recovery models, all F-caused differences except fluorine concentration in femur were gradually restored in a time-dependent manner. This study concluded that IL-17A knockout or self-recovery attenuated F-induced testicular injury and decrease of sperm quality through alleviating autoimmune reaction which was involved with the activation of IL-17A pathway, the damage of self-tolerance and the enhancement of antigen presentation.


Subject(s)
Fluorides , Interleukin-17 , Male , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Testis/metabolism , Mice, Inbred C57BL , Semen , Autoantibodies , RNA, Messenger
5.
Food Chem Toxicol ; 174: 113647, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736877

ABSTRACT

Excess fluoride (F) exposure can cause oxidative stress in the kidney. As an antioxidant, selenium (Se) can potentially protect the kidney from F-induced injury in rats. Hence, the histopathological, renal biochemical, oxidative stress, and apoptotic-related indices upon exposure to 100 mg/L sodium fluoride (NaF) and various doses of sodium selenite (Na2SeO3; 0.5, 1, and 2 mg/L) were assessed. Our results demonstrated that F-mediated renal structural damage and apoptosis elevated the content of serum creatinine (SCr), inhibited the activity of catalase (CAT) in serum, and increased the production of reactive oxygen species (ROS) in kidney and malondialdehyde (MDA) in serum. Interestingly, 1 mg/L dietary supplementation of Se tangibly mitigated these injuries. Furthermore, F could also change the gene and protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase1 (NQO1). Concomitantly, the different concentrations of Se notably alleviated their expression. Taken together, 1-2 mg/L Se ameliorated F-induced renal injury through oxidative stress and apoptosis-related routes. The recorded ameliorative effects might be related to the activation of the Nrf2/HO-1/NQO1 signaling pathway.


Subject(s)
Selenium , Rats , Animals , Selenium/pharmacology , Fluorides/metabolism , NF-E2-Related Factor 2/metabolism , Heme Oxygenase-1/metabolism , Oxidative Stress , Signal Transduction , Reactive Oxygen Species/metabolism , Kidney , Sodium Fluoride , Apoptosis , NAD(P)H Dehydrogenase (Quinone)/metabolism
6.
Biol Trace Elem Res ; 201(3): 1261-1273, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35445938

ABSTRACT

The reproductive toxicity of fluoride has been proven by a large number of studies. While the underlying mechanism of reproductive toxicity during pregnancy is still unclear. Hence, in this study, we investigated the effects of fluoride exposure on ovarian and testicular steroid hormone synthesis in young and adult rat offspring. We established a model of fluoride-exposed rat pups from in utero to puberty to explore the mechanisms of fluoride impacts on reproductive toxicity in the offspring. The results showed that NaF exposure did not affect the 3 weeks of age offspring. Whereas the body weight in both sexes significantly decreased, and the ovarian and testicular tissue structures were damaged at 11 weeks of age. In females, the total number of secondary follicles and mature follicles were significantly reduced after NaF exposure. Moreover, estradiol (E2) and follicle-stimulating hormone (FSH) levels in the females were significantly reduced in the 100 mg/L NaF exposure group. In males, the sperm viability and testosterone (T) were significantly decreased in the NaF exposure groups. Additionally, during steroidogenesis in ovaries and testes, fluoride remarkably decreased the expression levels of genes and proteins, including acute regulatory protein (StAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), cytochrome P450 17a-hydroxylase (CYP17A1), and cholesterol side-chain cleavage enzyme (CYP11A1), while the mRNA levels of 17ß-hydroxysteroid dehydrogenase (17ß-HSD) decreased only in the testes. These results indicated that fluoride exposure disrupted the steroid hormone balance by changing several important steroidogenic-related genes associated with the development of the gonads, and damage the normal structure of the gonads in rat offspring.


Subject(s)
Fluorides , Semen , Pregnancy , Female , Male , Animals , Rats , Fluorides/pharmacology , Sexual Maturation , Gonads/metabolism , Testosterone/metabolism
7.
Environ Toxicol ; 38(3): 511-521, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36286330

ABSTRACT

Fluoride pollution is widely present in the living environment. As a critical period of brain development, the perinatal period is extremely vulnerable to fluoride. Studies have found that choline can protect the brain's memory and enhance the ability to focus. However, the effect of choline on perinatal fluoride-induced nerve damage remains unclear. Therefore, 32 Kunming newly conceived female mice and their offspring mice were randomly divided into control, NaF, LC + NaF, and HC + NaF groups, and the HE staining, Y-maze test, RT-PCR, western blotting, immunohistochemistry, etc. were used in this study. The results showed that fluoride decreased the brain organ coefficients and brain protein content (p < 0.05, p < 0.01), and caused histomorphological damage in the hippocampus and cortex, which suggested that fluoride affected the development of the brain and damaged the brain. Moreover, the results of the Y-maze test showed that fluoride increased the number of learning days, error reaction time, and total reaction time, and decreased the AchE activity in the brain (p < 0.05, p < 0.01), which indicated that fluoride reduced the learning and memory ability of the mice. Besides, the results showed that fluoride decreased the mRNA and protein expression levels of α4ß2 nAChRs and α7 nAChRs in the hippocampus and cortex (p < 0.05, p < 0.01). However, perinatal choline supplementation reversed the aforementioned fluoride-induced changes. In short, these results demonstrated that choline alleviated perinatal fluoride-induced learning and memory impairment, which will provide a rationale for the mitigation and prevention of fluoride-induced brain damage.


Subject(s)
Choline , Fluorides , Mice , Pregnancy , Animals , Female , Fluorides/toxicity , Choline/pharmacology , Choline/metabolism , Memory Disorders/chemically induced , Memory Disorders/prevention & control , Hippocampus/metabolism
8.
J Agric Food Chem ; 70(50): 15962-15971, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36459405

ABSTRACT

Fluoride is widely used in agricultural production and food packaging. Excessive fluoride in water and food is a serious threat to liver health. α-Lipoic acid, a natural free radical scavenger, has hepatoprotective properties. However, the protective effect of α-lipoic acid on fluorohepatotoxicity is uncertain. The aim of this study was to investigate the mechanism of ferroptosis in α-lipoic acid preventing fluoride-induced hepatotoxicity. Five-week-old ICR mice were treated with sodium fluoride (100 mg/L) and/or α-lipoic acid (200 mg/kg) for 9 weeks. The results showed that α-lipoic acid attenuated fluoride-induced damage to liver morphology and ultrastructure. Moreover, α-lipoic acid alleviated fluoride-induced iron accumulation, increased oxidative stress, and elevated lipid peroxidation in the liver. In addition, the mechanism study found that α-lipoic acid prevented fluoride-induced ferroptosis through the System Xc-/GPX4 axis, lipid peroxidation axis, and iron metabolism axis, but it was interestingly not regulated by mitochondrial free radical axis in the hepatocytes. Altogether, this study indicated that α-lipoic acid prevents fluoride-induced liver injury by inhibiting ferroptosis, which has potential implications for the prevention and treatment of fluoride-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Thioctic Acid , Mice , Animals , Thioctic Acid/pharmacology , Fluorides/toxicity , Mice, Inbred ICR , Hepatocytes , Iron
9.
Ecotoxicol Environ Saf ; 247: 114249, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36323150

ABSTRACT

Fluoride (F) exists widely in food, water and other natural resources, and can cause damage to the reproductive system of human and animals. Studies have shown that selenium (Se) is a necessary trace element to maintain the normal male reproductive system. However, it is not clear whether it can alleviate the damage of reproductive system induced by F. Hence, sodium fluoride (NaF) was administered singly in drinking water at 100 mg L-1 alone and co-administered by drinking with sodium selenite (Na2SeO3) at 0.5, 1.0, 2.0 mg L-1 for 10 consecutive weeks. The results demonstrated that the sperm deformity rate were increased significantly by F, however, it was improved significantly after the addition of 2.0 mg L-1 Na2SeO3. The contents of glutathione peroxidase 4 (GPX-4), selenoprotein P (SePP), pregnenolone (PREG), androstenedione (ASD), and testosterone (T) were reduced obviously in the F group, however, it was increased significantly after adding 0.5, 1.0 and 2.0 mg L-1 Na2SeO3. F decreased noticeably the mRNA and protein expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side chain lyase (P450scc), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), cytochrome P450 17α-hydroxylase (P450c17) and 17ß-hydroxysteroid dehydrogenase (17ß-HSD), which was increased obviously after the addition of 1.0 and 2.0 mg L-1 Na2SeO3. In summary, 2.0 mg L-1 Na2SeO3 can alleviate testosterone synthesis disorder induced by F via reducing oxidative stress, increasing the level of selenoprotein in testis and regulating the content of related hormones and enzyme activity during testosterone synthesis pathway.


Subject(s)
Fluorides , Selenium , Male , Humans , Rats , Animals , Selenium/pharmacology , Semen , Reproduction , Testosterone
10.
J Agric Food Chem ; 70(44): 14284-14295, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36222057

ABSTRACT

Fluoride-induced liver injury seriously endangers human and animal health and animal food safety, but the underlying mechanism remains unclear. This study aims to explore the mechanism of miRNAs in fluoride-induced hepatic glycolipid metabolism disorders. C57 male mice were used to establish the fluorosis model (22.62 mg/L F-, 12 weeks). The results indicated that fluoride increased fluoride levels, impaired the structure and function, and disrupted the glycolipid metabolism in the liver. Furthermore, the sequencing results showed that fluoride exposure resulted in the differential expression of 35 miRNAs and 480 mRNAs, of which 23 miRNAs were related to glycolipid metabolism. miRNA-mRNA network analyses and RT-PCR revealed that miRNAs mediated fluoride-induced disturbances in the hepatic glycolipid metabolism. Its possible mechanism was to regulate the insulin pathway, PPAR pathway, and FOXO pathway, which in turn affected the bile secretion, the metabolic processes of glucose, the decomposition of lipids, and the synthesis of unsaturated fatty acids in the liver. This study provides a theoretical basis for miRNAs as diagnostic indicators and target drugs for the treatment of fluoride-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Lipid Metabolism Disorders , MicroRNAs , Humans , Male , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Glucose/metabolism , Lipid Metabolism/genetics , Fluorides/toxicity , Fluorides/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , RNA, Messenger/metabolism , Lipid Metabolism Disorders/metabolism , Glycolipids/metabolism
11.
Environ Sci Pollut Res Int ; 29(52): 78429-78443, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35688983

ABSTRACT

With the intensification of environmental pollution, the content of fluoride is increasing in human and animal living environments. Long-term fluoride exposure can cause damage to the liver and kidney, which are the main sites for fluoride metabolism, storage and removal. Moreover, exercise often accompanies the entire process of fluoride exposure in humans and animals. However, the mechanism of exercise on fluoride-induced liver and kidney injury remains unclear. Hence, we established a fluoride exposure and/or exercise mouse model to explore the influence of exercise on fluoride-induced liver and kidney inflammation and the potential mechanism. The results showed that fluoride caused obvious structural and functional damage and the notable recruitment of immunocytes in the liver and kidney. In addition, fluoride increased the levels of IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-21, TNF-α, and TGF-ß but decreased the ratio of IFN-γ/IL-4 and IL-2/IL-10, which indicated that fluoride disturbed the inflammatory balance and caused hepatonephritis. In addition, the expression levels of IKKß and NFκB were increased, and the expression of IκBα was decreased after fluoride exposure, indicating that fluoride activated the IKKß/NFκB pathway. In summary, long-term moderate treadmill exercise relieved fluoride-induced liver and kidney inflammatory responses through the IKKß/NFκB pathway, and exercise can be used to prevent fluoride-induced liver and kidney damage.


Subject(s)
I-kappa B Kinase , Interleukin-10 , Mice , Animals , Humans , I-kappa B Kinase/metabolism , NF-KappaB Inhibitor alpha/metabolism , Interleukin-10/metabolism , Fluorides/toxicity , Fluorides/metabolism , Interleukin-13/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-2/metabolism , Interleukin-4/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases , Liver/metabolism , Kidney/metabolism , Transforming Growth Factor beta/metabolism , Interleukin-12/metabolism
12.
ACS Appl Mater Interfaces ; 14(3): 3685-3700, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35023338

ABSTRACT

Depression is a mental health problem with typically high levels of distress and dysfunction, and 150 mg/L fluoride (F) can induce depression-like behavior. The development of depression is correlated with neuronal atrophy, insufficient secretion of monoamine neurotransmitters, extreme deviations from the normal microglial activation status, and immune-inflammatory response. Studies found that Se supplementation was related to the improvement of depression. In this study, we applied selenium nanoparticles (SeNPs) for F-induced depression disease mitigation by regulating the histopathology, metabolic index, genes, and protein expression related to the JAK2-STAT3 signaling pathway in vivo. Results showed that F and 2 mg Se/kg BW/day SeNPs lowered the dopamine (DA) content (P < 0.05), altered the microglial morphology, ramification index as well as solidity, and triggered the microglial neuroinflammatory response by increasing the p-STAT3 nuclear translocation (P < 0.01). Furthermore, F reduced the cortical Se content and the number of surviving neurons (P < 0.05), increasing the protein expressions of p-JAK2/JAK2 and p-STAT3/STAT3 of the cortex (P < 0.01), accompanied by the depression-like behavior. Importantly, 1 mg Se/kg BW/day SeNPs alleviated the microglial ramification index as well as solidity changes and decreased the interleukin-1ß secretion induced by F by suppressing the p-STAT3 nuclear translocation (P < 0.01). Likewise, 1 mg Se/kg BW/day SeNPs restored the F-disturbed dopamine and noradrenaline secretion, increased the number of cortical surviving neurons, and reduced the vacuolation area, ultimately suppressing the occurrence of depression-like behavior through inhibiting the JAK2-STAT3 pathway activation. In conclusion, 1 mg Se/kg BW/day SeNPs have mitigation effects on the F-induced depression-like behavior. The mechanism of how SeNPs repair neural functions will benefit depression mitigation. This study also indicates that inhibiting the JAK/STAT pathway can be a promising novel treatment for depressive disorders.


Subject(s)
Biocompatible Materials/pharmacology , Depression/drug therapy , Microglia/drug effects , Nanoparticles/chemistry , Selenium/pharmacology , Animals , Behavior, Animal/drug effects , Biocompatible Materials/chemistry , Depression/chemically induced , Fluorides , Male , Materials Testing , Mice , Mice, Inbred Strains , Selenium/chemistry
13.
Biol Trace Elem Res ; 200(1): 271-280, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33629228

ABSTRACT

Excessive fluoride (F) exposure can lead to liver damage; moreover, recent studies found that the addition of appropriate calcium (Ca) can alleviate the symptom of skeletal fluorosis. However, whether Ca can relieve F-induced liver damage through the mitochondrial apoptosis pathway has not been reported yet. Therefore, we assessed the liver morphology, serum transaminase content, liver oxidative stress-related enzymes, and apoptosis-related gene and protein expression in Sprague Dawley (SD) rats treated with 150 mg/L sodium fluoride (NaF) and different concentrations of calcium carbonate (CaCO3) for 120 days. Our results showed that NaF brought out pathological changes in liver morphology, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels increased, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) content decreased, and malondialdehyde (MDA) content increased, suggesting that NaF caused hepatotoxicity and oxidative stress. In addition, the results of quantitative real-time PCR (qRT-PCR) and immunohistochemistry showed that NaF exposure upregulated the expression of Bcl-2-associated x protein (Bax), rho-related coiled-coil kinase 1 (ROCK1), cytochrome C (Cyto-C) mRNA and protein (P < 0.01), and downregulated B cell lymphoma 2 (Bcl-2) protein and mRNA (P < 0.01), indicating that excessive F exposure activated mitochondrial-mediated apoptosis in the liver. However, the addition of 1% CaCO3 to the diet significantly increased the expression of anti-apoptotic gene Bcl-2 (P < 0.01), inhibited the activation of the mitochondrial apoptosis pathway, and reduced mitochondrial damage. In summary, supplementing 1% CaCO3 in the diet can alleviate the NaF-induced liver cell damage through the mitochondrial apoptosis pathway.


Subject(s)
Calcium, Dietary , Chemical and Drug Induced Liver Injury, Chronic , Animals , Apoptosis , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Fluorides/metabolism , Fluorine , Liver/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley
14.
Sci Total Environ ; 804: 150184, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517333

ABSTRACT

As an environmental toxicant, the damage of fluoride to the body has attracted global attention. Because liver is an essential organ for fluoride accumulation and damage. Our previous studies revealed fluoride-induced hepatic injury through interleukin 17A (IL-17A) pathway, but the underlying cellular mechanism remains unclear. Hence, this research explored the mechanism of IL-17A pathway and mitophagy in fluoride-induced liver injury through the use of the mice fluorosis model, IL-17A addition fluorosis cell model, IL-17A gene knockout mice fluorosis model, flow cytometry, immunohistochemistry, fluorescence double staining, ELISA, western blotting, and other techniques. The results showed that fluoride reduced the bodyweight and liver coefficient, increased the bone fluoride content, the aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GDH) levels, caspase 8 and caspase 9 activities, and induced liver morphology and ultrastructure damage. Furthermore, the protein expression levels of IL-17A pathway key proteins, IL-17A, IL-17R, and Act1 were increased, but IκB was decreased after fluoride exposure. In addition, fluoride exposure elevated the mitochondrial depolarization percent, the mitochondria damage, the fluorescent spots of mitophagy, and the LC3II/LC3I protein relative expression level. To further verify the role of the IL-17A pathway in fluoride-induced hepatocyte mitochondrial damage and mitophagy disorder, the IL-17A was added and knocked out in cells of animals. The results showed that the addition of IL-17A aggravated fluoride-induced liver morphology and functional damage, activation of the IL-17A pathway, mitochondrial injury, and mitophagy, but the IL-17A knockout mitigated fluoride-induced changes. These results suggested that fluoride exposure induced mitochondrial damage and mitophagy through the IL-17A pathway in hepatocytes.


Subject(s)
Fluorides , Mitophagy , Animals , Fluorides/toxicity , Hepatocytes , Interleukin-17 , Liver , Mice
16.
Ecotoxicol Environ Saf ; 226: 112851, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34619480

ABSTRACT

Long-term excessive intake of fluoride (F) can cause osseous and non-osseous damage. The kidney is the main fluoride excretion organ of the body. This study aimed to explore whether dietary calcium (Ca) supplementation can alleviate kidney damage caused by fluorosis and to further investigate the effects of Ca on the mitigation mechanism of renal cell apoptosis triggered by F. We evaluated the histopathological structure, renal function indicators, and gene and protein expression levels of death receptor-mediated apoptosis pathways in Sprague Dawley (SD) rats treated with sodium fluoride (NaF) and/or calcium carbonate (CaCO3) for 120 days. The results showed that 100 mg/L NaF induced kidney histopathological injury and apoptosis, increased the concentrations of Creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN), potassium (K), phosphorus (P) and F (p < 0.05), and decrease the level of serum magnesium (Mg) (p < 0.05). Moreover, NaF increased the mRNA and protein expression levels of Fas cell surface death receptor (FAS), tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Caspase 8, Caspase 3 and poly ADP-ribose polymerase (PARP) (p < 0.01), which finally activated the death receptor pathway. Inversely, Ca supplementation reversed the decrease of CRE, BUN, UA, F and P levels induced by F, alleviated histopathological damage and apoptosis, and reduced the gene and protein expression levels of death receptor pathway-related markers. In conclusion, 1% Ca alleviates F-induced kidney apoptosis through FAS/FASL, TNFR/TNF, DR5/TRAIL signaling pathways.


Subject(s)
Calcium , Fluorides , Animals , Apoptosis , Calcium/metabolism , Calcium, Dietary , Caspase 8 , Fas Ligand Protein/genetics , Fluorides/toxicity , Kidney/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
17.
Toxicol Res (Camb) ; 10(4): 911-927, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34484683

ABSTRACT

Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.

18.
Toxicol Lett ; 349: 12-29, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34089816

ABSTRACT

The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- ß, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cholestasis/drug therapy , Cytokines/metabolism , Inflammation Mediators/metabolism , Kidney Diseases/prevention & control , Kidney/drug effects , Liver Cirrhosis/prevention & control , Liver/drug effects , NF-kappa B/antagonists & inhibitors , Sulfasalazine/pharmacology , Animals , Cholestasis/metabolism , Cholestasis/pathology , Common Bile Duct/surgery , Disease Models, Animal , Down-Regulation , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Ligation , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Oxidative Stress/drug effects , Signal Transduction
19.
Toxicol In Vitro ; 72: 105074, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33352257

ABSTRACT

Arsenic (As), a potent toxicant, is known to be a hepatotoxicant. Although As induced liver apoptosis and autophagy, the relationship between apoptosis and autophagy of hepatocytes caused by As remains largely unknown. 3-methyladenine (3-MA) and rapamycin can inhibit and promote autophagy of AML-12 cells, respectively. Hence, in this study, AML-12 cells were treated with different concentrations (0, 2, 4, 6, 8, 10 and 12 µmol/L) of As2O3, and 5 mmol/L 3-MA or 100 nmol/L rapamycin were applied to distinguish the effect of autophagy on apoptosis in AML-12. Results showed that exposure to As induced cell apoptosis and autophagy, which were mediated by the significantly altered expression levels of autophagy markers (mTOR, LC3, PI3K and P62), and apoptosis markers (Bcl-2 and caspase-3). Further analysis indicated that a certain dosage of 3-MA and rapamycin decreased apoptosis and the caspase-3 expression, which suggested that As-induced autophagy regulated AML-12 cells apoptosis through the expressions of PI3K, mTOR, P62 and Bcl-2.


Subject(s)
Apoptosis/drug effects , Arsenic Trioxide/toxicity , Autophagy/drug effects , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cell Survival/drug effects , Mice , Microtubule-Associated Proteins/genetics , Sirolimus/pharmacology
20.
Chemosphere ; 263: 128178, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297146

ABSTRACT

The reproductive toxicity of fluoride (F) has been verified by various epidemiological and experimental studies. Our previous work suggested that the interleukin 17A (IL-17A) is involved in the testicular damage induced by excessive F exposure. In this study, we further investigated the role of IL-17A in F-induced testicular injury. Wild type (WT) and IL-17A knockout (IL-17A-/-) mice were exposed to 0, 25, 50, or 100 mg/L sodium fluoride (NaF) for 90 days. We found that exposure to excessive F levels caused testicular damage, decreased semen quality, negatively affected testicular morphology, and increased the inflammatory response. Specifically, excessive F intake increased the expression levels of IL-17A in the testis and increased the protein levels of Act1, NF-κB, IL-17R, C/EBP-α, and TRAF6 in the IL-17A signaling pathway. The increase in IL-17A expression corresponded to increases expression of IL-17R, IL-6, IL-23, IL-1ß, TGF-ß and TNF-α as assessed by RT-PCR and ELISA assays. Remarkably, IL-17A knockout in mice ameliorated the effects of F on testicular damage, semen quality, testicular morphology, and the immune response. Additionally, we found the in vitro exposure of Leydig cells to NaF and recombinant IL-17A led to abnormal apoptosis and a decrease in testosterone secretion. Our findings prove that IL-17A plays a key role in the exacerbation of testicular injuries in F-exposed mice, and that IL-17A deficiency can alleviate F-induced injury by inhibiting the immune response and apoptosis in the testis. These data suggest that targeting IL-17A may be a useful therapeutic strategy for treating F-mediated toxicity in the testis.


Subject(s)
Fluorides , Interleukin-17 , Animals , Apoptosis , Humans , Immunity , Interleukin-17/genetics , Male , Mice , Semen Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...