Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 391
Filter
1.
Neural Regen Res ; 20(5): 1221-1235, 2025 May 01.
Article in English | MEDLINE | ID: mdl-39075892

ABSTRACT

Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.

2.
Int J Biol Sci ; 20(11): 4146-4161, 2024.
Article in English | MEDLINE | ID: mdl-39247829

ABSTRACT

Ferroptosis has attracted extensive interest from cancer researchers due to its substantial potential as a therapeutic target. The role of LATS2, a core component of the Hippo pathway cascade, in ferroptosis initiation in hepatoblastoma (HB) has not yet been investigated. Furthermore, the underlying mechanism of decreased LATS2 expression remains largely unknown. In the present study, we demonstrated decreased LATS2 expression in HB and that LATS2 overexpression inhibits HB cell proliferation by inducing ferroptosis. Increased LATS2 expression reduced glycine and cysteine concentrations via the ATF4/PSAT1 axis. Physical binding between YAP1/ATF4 and the PSAT1 promoter was confirmed through ChIP‒qPCR. Moreover, METTL3 was identified as the writer of the LATS2 mRNA m6A modification at a specific site in the 5' UTR. Subsequently, YTHDF2 recognizes the m6A modification site and recruits the CCR4-NOT complex, leading to its degradation by mRNA deadenylation. In summary, N6-methyladenosine modification of LATS2 facilitates its degradation. Reduced LATS2 expression promotes hepatoblastoma progression by inhibiting ferroptosis through the YAP1/ATF4/PSAT1 axis. Targeting LATS2 is a potential strategy for HB therapy.


Subject(s)
Activating Transcription Factor 4 , Adenosine , Ferroptosis , Hepatoblastoma , Protein Serine-Threonine Kinases , Tumor Suppressor Proteins , YAP-Signaling Proteins , Humans , Hepatoblastoma/metabolism , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , YAP-Signaling Proteins/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Ferroptosis/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Cell Proliferation , Mice, Nude , Mice , Gene Expression Regulation, Neoplastic , Methyltransferases
3.
J Cereb Blood Flow Metab ; : 271678X241281020, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235536

ABSTRACT

Whether the dynamic development of peripheral inflammation aggravates brain injury and leads to poor outcome in stroke patients receiving intravenous thrombolysis (IVT), remains unclear and warrants further study. In this study, total of 1034 patients with acute ischemic stroke who underwent IVT were enrolled. Serum leukocyte variation (whether increase from baseline to 24 h after IVT), National Institutes of Health Stroke Scale (NIHSS), infarct volume, early neurologic deterioration (END), the unfavorable outcome at 3-month (modified Rankin Scale [mRS] score ≥3) and mortality were recorded. Serum brain injury biomarkers, including Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1), S100ß, neuron-specific enolase (NSE), were measured to reflect the extent of brain injury. We found that patients with increased serum leukocytes had elevated brain injury biomarkers (GFAP, UCH-L1, and S100ß), larger infarct volume, higher 24 h NIHSS, higher proportion of END, unfavorable outcome and mortality. Furthermore, an increase in serum leukocytes was independently associated with infarct volume, 24 h NIHSS, END, and unfavorable outcome at 3 months, and serum UCH-L1, S100ß, and NSE levels. These results suggest that an increase in serum leukocytes indicates severe brain injury and may be used to predict the outcome of patients with ischemic stroke who undergo IVT.

4.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2626-2643, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39174473

ABSTRACT

D-mannitol is a six-carbon sugar alcohol and one of the most abundant polyols in the nature. With antioxidant and osmotic pressure-regulating effects and non-metabolism by the human body, D-mannitol has been widely used in functional food and pharmaceutical industries. At present, a major way for industrial production of D-mannitol is chemical hydrogenation. In addition, D-Mannitol can be produced by microbial metabolism or catalysis. Compared with the chemical hydrogenation, the microbial methods for synthesizing mannitol do not produce sorbitol as a by-product and have the advantages of mild reaction conditions, strong specificity, and high conversion rate. Microbial fermentation is praised for easy access of strains and raw materials and simple separation of the product. Microbial catalysis usually adopts a multi-enzyme coupling strategy, which uses enzymes produced by engineered bacteria for whole-cell catalysis, and the cofactor recycling pathway is introduced to replenish expensive cofactor. This method can achieve high yields with cheap substrates under mild conditions without the formation of by-products. However, the application of microbial methods in the industrial production of D-mannitol is limited by the high costs of fermentation media and substrates and the long reaction time. This article reviews the reported microbial methods for producing D-mannitol, including the use of high-yielding strains and their fermentation processes, the utilization of low-cost substrates, whole-cell catalytic strategies, and the process control for high productivity. The biosynthesis of mannitol is not only of great significance for promoting industrial upgrading and realizing green manufacturing, but also provides strong support for the development of new bio-based products to meet the growing market demand. With the continuous improvement of technological innovation and industrial chain, it is expected to become one of the main ways of mannitol production in the future.


Subject(s)
Fermentation , Industrial Microbiology , Mannitol , Mannitol/metabolism , Industrial Microbiology/methods , Bacteria/metabolism , Bacteria/genetics , Metabolic Engineering/methods
5.
CNS Neurosci Ther ; 30(8): e70023, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39205499

ABSTRACT

AIMS: To investigate the relationship between peripheral blood lymphocyte subsets and prognosis in patients with acute ischemic stroke (AIS). METHODS: We enrolled 294 patients with AIS and collected peripheral blood samples for analysis of lymphocyte subsets. Prognosis was assessed at 3 months using the modified Rankin Scale (mRS). Association between lymphocyte count and poor outcomes (mRS score >2) was assessed using logistic regression. Individualized prediction models were developed to predict poor outcomes. RESULTS: Patients in the mRS score ≤2 group had higher T-cell percentage (odds ratio [OR] = 0.947; 95% confidence interval [CI]: 0.899-0.998; p = 0.040), CD3+ T-cell count (OR = 0.999; 95% CI: 0.998-1.000; p = 0.018), and CD4+ T-cell count (OR = 0.998; 95% CI: 0.997-1.000; p = 0.030) than those in the mRS score >2 group 1-3 days after stroke. The prediction model for poor prognosis based on the CD4+ T-cell count showed good discrimination (area under the curve of 0.844), calibration (p > 0.05), and clinical utility. CONCLUSION: Lower T cell percentage, CD3+, and CD4+ T-cell counts 1-3 days after stroke were independently associated with increased risk of poor prognosis. Individualized predictive model of poor prognosis based on CD4+ T-cell count have good accuracy and may predict disease prognosis.


Subject(s)
Ischemic Stroke , Lymphocyte Subsets , Humans , Male , Female , Ischemic Stroke/immunology , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Aged , Middle Aged , Prognosis , Lymphocyte Subsets/immunology , Aged, 80 and over , Predictive Value of Tests , Lymphocyte Count
6.
Biomed Pharmacother ; 179: 117311, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182322

ABSTRACT

The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).

7.
J Neurosci Res ; 102(8): e25372, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086264

ABSTRACT

The objective of this study was to investigate the potential mechanisms by which (+)-catechin alleviates neuropathic pain. Thirty-two male Sprague-Dawley rats were divided into four groups: the sham group, the chronic constriction injury (CCI)group, the CCI+ ibuprofen group, and the CCI+ (+)-catechin group. CCI surgery induces thermal hyperalgesia in rats and (+)-catechin ameliorated CCI-induced thermal hyperalgesia and repaired damaged sciatic nerve in rats. CCI decreased SOD levels in male rat spinal cord dorsal horn and promoted MDA production, induced oxidative stress by increasing NOX4 levels and decreasing antioxidant enzyme HO-1 levels, and also increased protein levels of TLR4, p-NF-κB, NLRP3 inflammasome components, and IL-1ß. In contrast, (+)-catechin reversed the above results. In i vitro experiments, (+)-catechin reduced the generation of reactive oxygen species (ROS) in GMI-R1 cells after LPS stimulation and attenuated the co-expression of IBA-1 and NLRP3. It also showed significant inhibition of the NF-κB and NLRP3 inflammatory pathways and activation of the Nrf2-mediated antioxidant system. Overall, these findings suggest that (+)-catechin inhibits the activation of the NLRP3 inflammasome through the triggering of the Nrf2-induced antioxidant system, the inhibition of the TLR4/NF-κB pathway, and the production of ROS to alleviate CCI-induced neuropathic pain in male rats.


Subject(s)
Antioxidants , Catechin , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuralgia , Signal Transduction , Animals , Male , Rats , Antioxidants/pharmacology , Catechin/pharmacology , Hyperalgesia/metabolism , Hyperalgesia/drug therapy , Inflammasomes/metabolism , Inflammasomes/drug effects , Neuralgia/metabolism , Neuralgia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/drug effects
9.
Research (Wash D C) ; 7: 0411, 2024.
Article in English | MEDLINE | ID: mdl-38974011

ABSTRACT

Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.

10.
J Am Heart Assoc ; 13(15): e034575, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39023075

ABSTRACT

BACKGROUND: Beat-to-beat blood pressure variability (BPV) is based on each heartbeat and represents a dynamic equilibrium process modulated by artery and cardiac involvement of pressure-receptive reflexes. To date, there remains a lack of prospective studies illustrating the clinical value of beat-to-beat BPV within 24 hours of acute ischemic stroke onset. METHODS AND RESULTS: This study prospectively monitored beat-to-beat blood pressure and heart rate in patients with acute ischemic stroke within 24 hours of onset using a noninvasive plethysmograph and calculated beat-to-beat BPV, heart rate variability, and the cross-correlation baroreflex sensitivity. A modified Rankin Scale score of ≥2 at 90 days was defined as an unfavorable prognosis. Multivariate logistic regression was performed, and the nomogram model was developed by adding the beat-to-beat BPV to the traditional model for predicting prognosis. Beat-to-beat BPV increased significantly in the unfavorable outcome group (P<0.05) compared with that in the favorable outcome group, whereas no difference was observed in beat-to-beat heart rate variability and cross-correlation baroreflex sensitivity between both groups (P>0.05). Furthermore, beat-to-beat BPV within 24 hours of acute ischemic stroke onset was independently associated with unfavorable outcome at 90 days (P<0.005). The addition of beat-to-beat BPV to the traditional model for predicting prognosis enhanced the area under the receiver operating characteristic curve from 0.816 to 0.830. CONCLUSIONS: Increased beat-to-beat BPV within 24 hours of acute ischemic stroke onset was independently associated with a poor prognosis at 90 days and may be a potential predictor for discriminating unfavorable prognosis.


Subject(s)
Baroreflex , Blood Pressure , Heart Rate , Ischemic Stroke , Humans , Male , Female , Blood Pressure/physiology , Heart Rate/physiology , Aged , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnosis , Prognosis , Baroreflex/physiology , Prospective Studies , Middle Aged , Time Factors , Predictive Value of Tests , Nomograms , Plethysmography , Aged, 80 and over , Functional Status
11.
Cancer Discov ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073085

ABSTRACT

Iron accumulation in tumors contributes to disease progression and chemoresistance. While targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells towards an immunostimulatory state characterized by production of type I interferon (IFN) and overexpression of molecules that activate natural killer (NK) cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T cell-centric modalities.

12.
Arch Microbiol ; 206(8): 359, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033087

ABSTRACT

In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.


Subject(s)
Fermentation , Lactobacillus plantarum , Polygonatum , Rhizome , Polygonatum/chemistry , Polygonatum/metabolism , Rhizome/chemistry , Lactobacillus plantarum/metabolism , Eutrophication , Plant Extracts/metabolism , Plant Extracts/chemistry , Lactic Acid/metabolism , Fatty Acids, Volatile/metabolism , Bioreactors/microbiology , Gastrointestinal Microbiome , Metabolomics
13.
Eur Stroke J ; : 23969873241258058, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859581

ABSTRACT

RATIONALE: To date, the benefit of intravenous thrombolysis for acute ischemic stroke (AIS) patients without advanced neuroimaging selection is confined to within 4.5 h of onset. Our phase II EXIT-BT (Extending the tIme window of Thrombolysis by ButylphThalide up to 6 h after onset) trial suggested the safety, feasibility, and potential benefit of intravenous tenecteplase (TNK) in AIS between 4.5 and 6 h of onset. The EXIT-BT2 trial is a pivotal study undertaken to confirm or refute this signal. AIM: To investigate the efficacy and safety of TNK for AIS between 4.5 and 6 h of onset with or without endovascular treatment. SAMPLE SIZE ESTIMATES: A maximum of 1440 patients are required to test the superiority hypothesis with 80% power according to a two-sided 0.05 level of significance, stratified by age, sex, history of diabetes, location of vessel occlusion, baseline National Institute of Health stroke scale score, stroke etiology, and plan for endovascular treatment. DESIGN: EXIT-BT2 is a prospective, randomized, open-label, blinded assessment of endpoint (PROBE), and multi-center study. Eligible AIS patients between 4.5 and 6 h of onset are randomly assigned 1:1 into a TNK group or control group. The TNK group will receive TNK (0.25 mg/kg, a single bolus over 5-10 s, maximum 25 mg). The control group will receive standard medical care in compliance with national guidelines for acute ischemic stroke. Both groups will receive standard stroke care from randomization to 90 days after stroke onset according to national guidelines. OUTCOME: The primary efficacy endpoint is excellent functional outcome, defined as a modified Rankin Scale score 0-1 at 90 days after randomization, while the primary safety endpoint is symptomatic intracerebral hemorrhage, defined as National Institutes of Health Stroke Scale score increase ⩾4 caused by intracranial hemorrhage within 24 (-6/+12) h after randomization. CONCLUSIONS: The results of EXIT-BT2 may determine whether intravenous TNK has a favorable risk/benefit profile in AIS between 4.5 and 6 h of onset.

14.
Chin Med J (Engl) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915214

ABSTRACT

ABSTRACT: Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100ß, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.

15.
Biomaterials ; 311: 122664, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38889597

ABSTRACT

In order to guide the formulation of post-stroke treatment strategy in time, it is necessary to have real-time feedback on collateral circulation and revascularization. Currently used near-infrared II (NIR-II) probes have inherent binding with endogenous albumin, resulting in significant background signals and uncontrollable pharmacokinetics. Therefore, the albumin-escaping properties of the new probe, IR-808AC, was designed, which achieved timely excretion and low background signal, enabling the short-term repeatable injection for visualization of cerebral vessels and perfusion. We further achieved continuous observation of changes in collateral vessels and perfusion during the 7-d period in middle cerebral artery occlusion mice using IR-808AC in vivo. Furthermore, using IR-808AC, we confirmed that remote ischemic conditioning could promote collateral vessels and perfusion. Finally, we evaluated the revascularization after thrombolysis on time in embolic stroke mice using IR-808AC. Overall, our study introduces a novel methodology for safe, non-invasive, and repeatable assessment of collateral circulation and revascularization in real-time that is crucial for the optimization of treatment strategies.


Subject(s)
Disease Models, Animal , Stroke , Animals , Stroke/diagnostic imaging , Mice , Male , Perfusion Imaging/methods , Cerebral Arteries/diagnostic imaging , Mice, Inbred C57BL , Albumins/chemistry , Infarction, Middle Cerebral Artery/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Collateral Circulation
16.
Talanta ; 276: 126205, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718649

ABSTRACT

Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.


Subject(s)
Electrochemical Techniques , Immunoassay , Thyroglobulin , Humans , Carbon/chemistry , Electrochemical Techniques/methods , Immunoassay/methods , Limit of Detection , Luminescent Measurements/methods , Quantum Dots/chemistry , Thyroglobulin/blood
17.
Nat Sci Sleep ; 16: 431-443, 2024.
Article in English | MEDLINE | ID: mdl-38706925

ABSTRACT

Background: Restless legs syndrome (RLS) is a prevalent sensorimotor nervous system disorder in patients accompanied with insomnia, blood pressure fluctuation, and sympathetic dysfunction. These symptoms may disrupt cerebral hemodynamics. Dynamic cerebral autoregulation (dCA) describes the temporary response of cerebrovascular system to abrupt fluctuations in blood pressure, which keep cerebral blood flow stable and serve as a marker of cerebrovascular system ability. Objective: This research aimed to assess dCA in RLS patients. Methods: In this study, RLS patients were recruited and subsequently classified into four groups (mild, moderate, severe, and very severe) based on the International RLS Rating Scale (IRLS). Healthy controls matched for age and sex were enrolled. All participants were evaluated dCA by assessing phase difference (PD). A portion of patients with RLS was reassessed for dCA after one month of medication therapy (pramipexole [0.125 mg/day] and gabapentin [300 mg/day]). Results: There were altogether 120 patients with RLS and 30 controls completed the polysomnography and dCA assessment. PD was lower in the moderate, severe, and very severe RLS groups than that in the controls and mild RLS groups. Periodic limb movement index (PLMI), arousal index, and IRLS all showed a linear correlation with PD in RLS patients. Additionally, PD increased in RLS patients after therapy. Conclusion: The dCA was compromised in moderate, severe, and very severe RLS patients and was negatively correlated with the IRLS, arousal index, and PLMI. After 1 month of therapy, dCA improved in RLS patients.

19.
CNS Neurosci Ther ; 30(5): e14748, 2024 05.
Article in English | MEDLINE | ID: mdl-38727518

ABSTRACT

AIMS: To investigate the characteristics of dynamic cerebral autoregulation (dCA) after intravenous thrombolysis (IVT) and assess the relationship between dCA and prognosis. METHODS: Patients with unilateral acute ischemic stroke receiving IVT were prospectively enrolled; those who did not were selected as controls. All patients underwent dCA measurements, by quantifying the phase difference (PD) and gain, at 1-3 and 7-10 days after stroke onset. Simultaneously, two dCA-based nomogram models were established to verify the predictive value of dCA for patients with mild-to-moderate stroke. RESULTS: Finally, 202 patients who received IVT and 238 who did not were included. IVT was positively correlated with higher PD on days 1-3 and 7-10 after stroke onset. PD values in both sides at 1-3 days after stroke onset and in the affected side at 7-10 days after onset were independent predictors of unfavorable outcomes in patients who received IVT. Additionally, in patients with mild-to-moderate stroke who received IVT, the dCA-based nomogram models significantly improved the risk predictive ability for 3-month unfavorable outcomes. CONCLUSION: IVT has a positive effect on dCA in patients with acute stroke; furthermore, dCA may be useful to predict the prognosis of patients with IVT.


Subject(s)
Homeostasis , Ischemic Stroke , Thrombolytic Therapy , Humans , Male , Female , Aged , Middle Aged , Prognosis , Thrombolytic Therapy/methods , Homeostasis/physiology , Homeostasis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/physiopathology , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/therapeutic use , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/drug effects , Prospective Studies , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/therapeutic use , Administration, Intravenous , Predictive Value of Tests , Aged, 80 and over , Nomograms , Stroke/drug therapy , Stroke/physiopathology
20.
BMC Pulm Med ; 24(1): 220, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702679

ABSTRACT

BACKGROUND: Recent research suggests that periodontitis can increase the risk of chronic obstructive pulmonary disease (COPD). In this study, we performed two-sample Mendelian randomization (MR) and investigated the causal effect of periodontitis (PD) on the genetic prediction of COPD. The study aimed to estimate how exposures affected outcomes. METHODS: Published data from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) Consortium's genome-wide association studies (GWAS) for periodontitis (17,353 cases and 28,210 controls) and COPD (16,488 cases and 169,688 controls) from European ancestry were utilized. This study employed a two-sample MR analysis approach and applied several complementary methods, including weighted median, inverse variance weighted (IVW), and MR-Egger regression. Multivariable Mendelian randomization (MVMR) analysis was further conducted to mitigate the influence of smoking on COPD. RESULTS: We chose five single-nucleotide polymorphisms (SNPs) as instrumental variables for periodontitis. A strong genetically predicted causal link between periodontitis and COPD, that is, periodontitis as an independent risk factor for COPD was detected. PD (OR = 1.102951, 95% CI: 1.005-1.211, p = 0.039) MR-Egger regression and weighted median analysis results were coincident with those of the IVW method. According to the sensitivity analysis, horizontal pleiotropy's effect on causal estimations seemed unlikely. However, reverse MR analysis revealed no significant genetic causal association between COPD and periodontitis. IVW (OR = 1.048 > 1, 95%CI: 0.973-1.128, p = 0.2082) MR Egger (OR = 0.826, 95%CI:0.658-1.037, p = 0.1104) and weighted median (OR = 1.043, 95%CI: 0.941-1.156, p = 0.4239). The results of multivariable Mendelian randomization (MVMR) analysis, after adjusting for the confounding effect of smoking, suggest a potential causal relationship between periodontitis and COPD (P = 0.035). CONCLUSION: In this study, periodontitis was found to be independent of COPD and a significant risk factor, providing new insights into periodontitis-mediated mechanisms underlying COPD development.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Smoking , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors , Smoking/epidemiology , Smoking/adverse effects , Periodontitis/genetics , Periodontitis/epidemiology , Severity of Illness Index , Genetic Predisposition to Disease , Periodontal Diseases/genetics , Periodontal Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL