Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Heliyon ; 10(11): e31707, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845990

ABSTRACT

Background: Thyroid cancer (THCA) has become a common malignancy in recent years, with the mortality rate steadily increasing. PANoptosis is a unique kind of programmed cell death (PCD), including pyroptosis, necroptosis, and apoptosis, and is involved in the proliferation and prognosis of numerous cancers. This paper demonstrated the connection between PANoptosis-related genes and THCA based on the analyses of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, which have not been evaluated yet. Methods: We identified PANoptosis-related differentially expressed genes (PRDEGs) by multi-analyzing the TCGA-THCA and GEO datasets. To identify the significant PRDEGs, a prognostic model was constructed using least absolute shrinkage and selection operator regression (LASSO). The predictive values of the significant PRDEGs for THCA outcomes were determined using Cox regression analysis and nomograms. Gene enrichment analyses were performed. Finally, immunohistochemistry was carried out using the human protein atlas. Results: A LASSO regression model based on nine PRDEGs was constructed, and the prognostic value of key PRDEGs was explored via risk score. Univariate and multivariate Cox regression were implemented to identify further three significant PRDEGs closely related to distant metastasis, lymph node metastasis, and tumor stage. Then, a nomogram was constructed, which presented high predictive accuracy for 5 years survival of THCA patients. Gene enrichment analyses in THCA were strongly associated with PCD pathways. CASP6 presented significantly differential expression during clinical T stage, N stage, and PFI events (P < 0.05 for all) and demonstrated the highest degree of diagnostic efficacy in PRDEGs (HR: 2.060, 95 % CI: 1.170-3.628, P < 0.05). Immunohistochemistry showed CASP6 was more abundant in THCA tumor tissue. Conclusion: A potential prognostic role for PRDEGs in THCA was identified, providing a new direction for treatment. CASP6 may be a potential therapeutic target and a novel prognostic biomarker for THCA.

2.
Chaos ; 34(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829794

ABSTRACT

The adaptation underlying many realistic processes plays a pivotal role in shaping the collective dynamics of diverse systems. Here, we untangle the generic conditions for synchronization transitions in a system of coupled phase oscillators incorporating the adaptive scheme encoded by the feedback between the coupling and the order parameter via a power-law function with different weights. We mathematically argue that, in the subcritical and supercritical correlation scenarios, there exists no critical adaptive fraction for synchronization transitions converting from the first (second)-order to the second (first)-order. In contrast to the synchronization transitions previously deemed, the explosive and continuous phase transitions take place in the corresponding regions as long as the adaptive fraction is nonzero, respectively. Nevertheless, we uncover that, at the critical correlation, the routes toward synchronization depend crucially on the relative adaptive weights. In particular, we unveil that the emergence of a range of interrelated scaling behaviors of the order parameter near criticality, manifesting the subcritical and supercritical bifurcations, are responsible for various observed phase transitions. Our work, thus, provides profound insights for understanding the dynamical nature of phase transitions, and for better controlling and manipulating synchronization transitions in networked systems with adaptation.

3.
Chaos ; 34(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38934725

ABSTRACT

In this paper, the preferentially cutting-rewiring operation (PCRO) consisting of the cutting procedure and the rewiring procedure is proposed and is applied on an excitable Erdös-Rényi random network (EERRN), by which the structure of the initially homogeneous network changes dramatically, and lots of common leaves (CLs) are formed between the two hubs. Subsequently, besides the single-mode oscillations that can be usually observed in homogeneous excitable systems, a new kind of multi-mode oscillations composed of synchronous and asynchronous parts can self-organize to emerge, which are similar to the coherent and incoherent clusters in traditional chimera states and are consequently named as the chimeralike oscillation modes (CLOMs). Importantly, by utilizing the dominant phase-advanced driving method, both the mechanisms for the formation and the emergence of CLOMs in EERRNs with PCRO are well explained, among which the CL is exposed to play a key role in forming the CLOMs. Furthermore, the PCRO-induced CLOM phenomena can also be observed in other paradigmatic network models or with other paradigmatic excitable dynamics, which definitely confirms that the PCRO is an universal method in inducing the CLOMs in excitable complex networks. Our contributions may shed lights on a new perspective of the emergence of CLOMs in complex systems and would have great impacts in related fields.

4.
Adv Healthc Mater ; 13(17): e2303828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608209

ABSTRACT

Partial hepatectomy is an essential surgical technique used to treat advanced liver diseases such as liver tumors, as well as for performing liver transplants from living donors. However, postoperative complications such as bleeding, abdominal adhesions, wound infections, and inadequate liver regeneration pose significant challenges and increase morbidity and mortality rates. A self-repairing mixed hydrogel (O5H2/Cu2+/SCCK), containing stem cell derived cytokine (SCCK) derived from human umbilical cord mesenchymal stem cells (HUMSCs) treated with the traditional Chinese remedy Tanshinone IIA (TSA), is developed. This SCCK, in conjunction with O5H2, demonstrates remarkable effects on Kupffer cell activation and extracellular matrix (ECM) remodeling. This leads to the secretion of critical growth factors promoting enhanced proliferation of hepatocytes and endothelial cells, thereby facilitating liver regeneration and repair after partial hepatectomy. Furthermore, the hydrogel, featuring macrophage-regulating properties, effectively mitigates inflammation and oxidative stress damage in the incision area, creating an optimal environment for postoperative liver regeneration. The injectability and strong adhesion of the hydrogel enables rapid hemostasis at the incision site, while its physical barrier function prevents postoperative abdominal adhesions. Furthermore, the hydrogel's incorporation of Cu2+ provides comprehensive antibacterial effects, protecting against a wide range of bacteria types and reducing the chances of infections after surgery.


Subject(s)
Extracellular Matrix , Hepatectomy , Hydrogels , Kupffer Cells , Liver Regeneration , Liver Regeneration/drug effects , Liver Regeneration/physiology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Humans , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Mice , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Male , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Cytokines/metabolism , Mice, Inbred C57BL
5.
J Med Virol ; 96(3): e29543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528839

ABSTRACT

Amidst the COVID-19 pandemic, uncertainty persists among caregivers regarding the vaccination of pediatric liver transplant recipients (PLTRs). This study evaluates the immunogenicity and safety of COVID-19 vaccination in this vulnerable population. A cohort of 30 PLTRs underwent sequential vaccinations with an inactivated SARS-CoV-2 vaccine followed by an Ad5-nCoV booster. We collected and analyzed blood samples pre-vaccination and four weeks post-vaccination to quantify antibody and IGRA (IFN-γ Release Assay) levels. We also documented any adverse reactions occurring within seven days post-vaccination and monitored participants for infections over six months post-vaccination, culminating in a comprehensive statistical analysis. The Ad5-nCoV booster substantially elevated IgG (T1: 18.01, 20%; T2: 66.61, 55%) and nAb (T1: 119.29, 8%; T2: 3799.75, 80%) levels, as well as T-cell responses, in comparison to the initial dose. The first dose was associated with some common adverse reactions, such as injection site pain (13.3%) and fever (16.6%), but a low rate of systemic reactions (16.0%). There was no significant difference in Omicron infection rates or RTPCR conversion times between vaccinated and unvaccinated groups. Notably, following Omicron infection, vaccinated individuals exhibited significantly higher SARS-CoV-2 IgG and nAb titers (average IgG: 231.21 vs. 62.09 S/CO, p = 0.0003; nAb: 5246.11 vs. 2592.07 IU/mL, p = 0.0002). The use of inactivated vaccines followed by an Ad5-nCoV booster in PLTRs is generally safe and elicits a robust humoral response, albeit with limited T-cell responses.


Subject(s)
COVID-19 , Liver Transplantation , Humans , Child , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Vaccines, Inactivated/adverse effects , Antibodies, Neutralizing , Vaccination
6.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38341762

ABSTRACT

Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.

7.
EClinicalMedicine ; 67: 102359, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188690

ABSTRACT

Background: Leritrelvir is a novel α-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease. A preclinical study has demonstrated leritrelvir poses similar antiviral activities towards different SARS-CoV-2 variants compared with nirmatrelvir. A phase 2 clinical trial has shown a comparable antiviral efficacy and safety between leritrelvir with and without ritonavir co-administration. This trial aims to test efficacy and safety of leritrelvir monotherapy in adults with mild-to-moderate COVID-19. Methods: This was a randomised, double-blind, placebo-controlled, multicentre phase 3 trial at 29 clinical sites in China. Enrolled patients were from 18 to 75 years old, diagnosed with mild or moderate COVID-19 and not requiring hospitalization. Patients had a positive SARS-CoV-2 nucleic acid test (NAT) and at least one of the COVID-19 symptoms within 48 h before randomization, and the interval between the first positive SARS-CoV-2 NAT and randomization was ≤120 h (5 days). Patients were randomly assigned in a 1:1 ratio to receive a 5-day course of either oral leritrelvir 400 mg TID or placebo. The primary efficacy endpoint was the time from the first dose to sustained clinical recovery of all 11 symptoms (stuffy or runny nose, sore throat, shortness of breath or dyspnea, cough, muscle or body aches, headache, chills, fever ≥37 °C, nausea, vomiting, and diarrhea). The safety endpoint was the incidence of adverse events (AE). Primary and safety analyses were performed in the intention-to-treat (ITT) population. This study is registered with ClinicalTrials.gov, NCT05620160. Findings: Between Nov 12 and Dec 30, 2022 when the zero COVID policy was abolished nationwide, a total of 1359 patients underwent randomization, 680 were assigned to leritrelvir group and 679 to placebo group. The median time to sustained clinical recovery in leritrelvir group was significantly shorter (251.02 h [IQR 188.95-428.68 h]) than that of Placebo (271.33 h [IQR 219.00-529.63 h], P = 0.0022, hazard ratio [HR] 1.20, 95% confidence interval [CI], 1.07-1.35). Further analysis of subgroups for the median time to sustained clinical recovery revealed that (1) subgroup with positive viral nucleic acid tested ≤72 h had a 33.9 h difference in leritrelvir group than that of placebo; (2) the subgroup with baseline viral load >8 log 10 Copies/mL in leritrelvir group had 51.3 h difference than that of placebo. Leritrelvir reduced viral load by 0.82 log10 on day 4 compared to placebo. No participants in either group progressed to severe COVID-19 by day 29. Adverse events were reported in two groups: leritrelvir 315 (46.46%) compared with placebo 292 (43.52%). Treatment-relevant AEs were similar 218 (32.15%) in the leritrelvir group and 186 (27.72%) in placebo. Two cases of COVID-19 pneumonia were reported in placebo group, and one case in leritrelvir group, none of them were considered by the investigators to be leritrelvir related. The most frequently reported AEs (occurring in ≥5% of participants in at least one group) were laboratory finding: hypertriglyceridemia (leritrelvir 79 [11.7%] vs. placebo 70 [10.4%]) and hyperlipidemia (60 [8.8%] vs. 52 [7.7%]); all of them were nonserious. Interpretation: Leritrelvir monotherapy has good efficacy for mild-to-moderate COVID-19 and without serious safety concerns. Funding: This study was funded by the National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project and R&D Program of Guangzhou Laboratory.

8.
Front Med ; 18(2): 375-393, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157196

ABSTRACT

Retroperitoneal liposarcoma (RLPS) is the main subtype of retroperitoneal soft sarcoma (RSTS) and has a poor prognosis and few treatment options, except for surgery. The proteomic and metabolic profiles of RLPS have remained unclear. The aim of our study was to reveal the metabolic profile of RLPS. Here, we performed proteomic analysis (n = 10), metabolomic analysis (n = 51), and lipidomic analysis (n = 50) of retroperitoneal dedifferentiated liposarcoma (RDDLPS) and retroperitoneal well-differentiated liposarcoma (RWDLPS) tissue and paired adjacent adipose tissue obtained during surgery. Data analysis mainly revealed that glycolysis, purine metabolism, pyrimidine metabolism and phospholipid formation were upregulated in both RDDLPS and RWDLPS tissue compared with the adjacent adipose tissue, whereas the tricarboxylic acid (TCA) cycle, lipid absorption and synthesis, fatty acid degradation and biosynthesis, as well as glycine, serine, and threonine metabolism were downregulated. Of particular importance, the glycolytic inhibitor 2-deoxy-D-glucose and pentose phosphate pathway (PPP) inhibitor RRX-001 significantly promoted the antitumor effects of the MDM2 inhibitor RG7112 and CDK4 inhibitor abemaciclib. Our study not only describes the metabolic profiles of RDDLPS and RWDLPS, but also offers potential therapeutic targets and strategies for RLPS.


Subject(s)
Liposarcoma , Retroperitoneal Neoplasms , Humans , Retroperitoneal Neoplasms/metabolism , Liposarcoma/metabolism , Male , Middle Aged , Female , Proteomics , Metabolomics , Aged , Metabolome , Adult , Multiomics
9.
Phys Rev E ; 108(5-1): 054203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115455

ABSTRACT

Synchronization is a critical phenomenon that displays a pivotal role in a wealth of dynamical processes ranging from natural to artificial systems. Here, we untangle the synchronization optimization in a system of globally coupled phase oscillators incorporating heterogeneous interactions encoded by the deterministic-random coupling. We uncover that, within the given restriction, the added deterministic correlations can profoundly enhance the synchronizability in comparison with the uncorrelated scenario. The critical points manifesting the onset of synchronization and desynchronization transitions, as well as the level of phase coherence, are significantly shaped by the increment of deterministic correlations. In particular, we provide an analytical treatment to properly ground the mechanism underlying synchronization enhancement and substantiate that the analytical predictions are in fair agreement with the numerical simulations. This study is a step forward in highlighting the importance of heterogeneous coupling among dynamical agents, which provides insights for control strategies of synchronization in complex systems.

10.
Opt Express ; 31(21): 34021-34033, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859167

ABSTRACT

We demonstrate a scheme for the generation of bipartite and tripartite entanglement, as well as he implementation of stable and controllable long-distance one-way and asymmetric two-way steering in a cavity-magnon hybrid system. This system consists of a magnon mode and two coupled microwave cavities. The first cavity is driven by a flux-driven Josephson parametric amplifier, which generates squeezed vacuum fields, and is coupled to the other cavity through optical tunneling interaction. The second cavity and magnon mode are coupled through magnetic dipole interaction. We find that under weak coupling between the two cavities, and strong coupling between the second cavity and magnon mode, remote controllable one-way steering and tripartite entanglement can be achieved. Our scheme may have potential applications in quantum information.

11.
Opt Express ; 31(21): 34764-34778, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859225

ABSTRACT

We investigate the enhancement of entanglement and EPR steering in a parity-time(PT-) symmetric-like cavity-opto-magnomechanical system. The system consists of an optical cavity, a magnon mode in a ferromagnetic crystal, a phonon mode, and a microwave cavity. Our findings demonstrate that microwave-cavity gain significantly boosts distant quantum entanglement and greatly improves the robustness of bipartite entanglement against environment temperature. Additionally, we observe an enhancement of tripartite entanglement within the system and uncover the phenomenon of entanglement transfer. Notably, we also achieve one-way steering and two-way asymmetric steering in the system. This study offers insights into the integration of traditional optomechanics and cavity magnomechanics, presenting a novel approach to manipulate asymmetric quantum steering between two distant macroscopic objects. The implications of our research extend to the fields of quantum state preparation and quantum information.

13.
Opt Lett ; 48(15): 4085-4088, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527124

ABSTRACT

A simple and compact polarimeter comprising two electrically controlled liquid-crystal variable retarders (LCVRs) and a linear polarizer is demonstrated, which is enabled by analyzing the intensity variation of the modulated output light based on a computational algorithm. A proof-of-concept prototype is presented, which is mounted onto a power meter or a CMOS camera for the intensity data collection. The polarimetric measurement for the spatial variant polarization states of light is also verified, indicating the possibility of achieving a resolution-lossless polarimeter. Thus, our proposed method shows a cost-effective way to realize a compact polarimeter in polarization optics.

14.
Biochem Pharmacol ; 214: 115676, 2023 08.
Article in English | MEDLINE | ID: mdl-37419372

ABSTRACT

Post-transplant lymphoproliferative disorder (PTLD) is one of the most serious complications after transplantation. Epstein-Barr virus (EBV) is a key pathogenic driver of PTLD. About 80% of PTLD patients are EBV positive. However, the accuracy of preventing and diagnosing EBV-PTLD by monitoring EBV DNA load is limited. Therefore, new diagnostic molecular markers are urgently needed. EBV-encoded miRNAs can regulate a variety of EBV-associated tumors and are expected to be potential diagnostic markers and therapeutic targets. We found BHRF1-1 and BART2-5p were significantly elevated in EBV-PTLD patients, functionally promoting proliferation and inhibiting apoptosis in EBV-PTLD. Mechanistically, we first found that LZTS2 acts as a tumor suppressor gene in EBV-PTLD, and BHRF1-1 and BART2-5p can simultaneously inhibit LZTS2 and activate PI3K-AKT pathway. This study shows that BHRF1-1 and BART2-5p can simultaneously inhibit the expression of tumor suppressor LZTS2, and activate the PI3K-AKT pathway, leading to the occurrence and development of EBV-PTLD. Therefore, BHRF1-1 and BART2-5p are expected to be potential diagnostic markers and therapeutic targets for EBV-PTLD patients.


Subject(s)
Epstein-Barr Virus Infections , Lymphoproliferative Disorders , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/diagnosis , DNA-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Viral Proteins/metabolism
15.
Opt Express ; 31(13): 20955-20964, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381207

ABSTRACT

By designing a liquid crystal cell with comb electrode structure, the alignment modulation of nematic liquid crystal in the cell can be realized after the electric field is applied. In different orientation regions, the incident laser beam can deflect at different angles. At the same time, by changing the incident angle of the laser beam, the reflection modulation of the laser beam on the interface of the liquid crystal molecular orientation change can be realized. Based on the above discussion, we then demonstrate the modulation of liquid crystal molecular orientation arrays on nematicon pairs. In different orientation regions of liquid crystal molecules, nematicon pairs can exhibit various combinations of deflections, and these deflection angles are modulable under external fields. Deflection and modulation of nematicon pairs have potential applications in optical routing and optical communication.

16.
J Am Chem Soc ; 145(24): 12951-12966, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37276078

ABSTRACT

Circularly polarized luminescence (CPL) is attracting much interest because it can carry extensive optical information. CPL shows left- or right-handedness and can be regarded as part of high-level visual perception to supply an extra dimension of information with regard to regular light. A key to meeting the needs for practical applications is to develop the emerging field of ultra-dissymmetric CPL. Chiral liquid crystal (LC) assemblies─otherwise referred to as cholesteric liquid crystals (CLCs)─are essentially organized helical superstructures with a highly ordered one-dimensional orientation, and distinctly superior to regular helical supramolecules. CLCs can achieve a perfect equilibrium of molecular short-range interaction and long-range orientational order, enabling molecule-scale chirality on a helical pitch and observable scale. LC assembly could be an ideal strategy for amplifying chirality, making it accessible to ultra-dissymmetric CPL. Herein, we focused on some basic but important issues regarding CPL: (i) How can CPL be created from chiral dyes? (ii) Is the chirality of luminescent dyes an essential factor for the generation of CPL? That is, can all chiral dyes emit CPL and vice versa? (iii) How can CPL be transferred within intermolecular systems, and what principles of CPL transmission should be followed? Given these queries and our work, in this Perspective we discuss the generation, transmission, and modulation of CPL with chiral LC assembly, aiming to design and build up novel chiroptical materials. Recent applications of CPL-active LC microstructures in three-dimensional displays, circularly polarized lasers, and asymmetric catalysis are also discussed.

17.
Opt Lett ; 48(11): 3083-3086, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262286

ABSTRACT

Holography is promising to fully record and reconstruct the fundamental properties of light, while the limitations of working bandwidth, allowed polarization states, and dispersive response impede further advances in the integration level and functionality. Here, we propose an ultra-broadband holography based on twisted nematic liquid crystals (TNLCs), which can efficiently work in both the visible and infrared regions with a working spectrum of over 1000 nm. The underlying physics is that the electric field vector of light through TNLCs can be parallelly manipulated in the broad spectral range, thus enabling to build the ultra-broadband TNLC hologram by dynamic photopatterning. Furthermore, by introducing a simple nematic liquid crystal (NLC) element, the cascaded device allows for an excellent nondispersive polarization-maintaining performance that can adapt to full-polarization incidence. We expect our proposed methodology of holography may inspire new avenues for usages in polarization imaging, augmented/virtual reality display, and optical encryption.

18.
Chaos ; 33(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37352505

ABSTRACT

The optimization of synchronization on distributed power grids is an important topic in recent years. We extensively study the optimization by restructuring grid topology in terms of connection rewirings. Due to the node-link dual property of power networks, i.e., the intrinsic generator-load dynamics of nodes and the multiple-attribute connections, we propose the frequency-correlation-optimization scheme to get grid topology with the largest anti-correlation by targeting the frequency-correlation function among nodes. The topology optimizations on both sparse and dense networks are successfully realized. The optimized topology exhibits more generator-consumer connections, indicating that a decentralization of the distribution of generator nodes on power grids favors synchronizability. The benefits of these frequency-correlation-optimized power grids to synchrony are verified. By comparing with the phase-coherence-optimization scheme that favors both the optimal topology and efficient synchronizability, we show that the frequency-correlation optimization and the phase-coherence optimization of power grids are usually compatible, while the former is more efficient and simpler in avoiding tedious simulations of high-dimensional nonlinear dynamics. Our explorations may shed light on the predesign and construction of modern distributed power grids, which are composed of decentralized miscellaneous power sources.


Subject(s)
Algorithms , Models, Theoretical , Computer Simulation , Nonlinear Dynamics , Electrodes
19.
Pharmacol Res ; 192: 106800, 2023 06.
Article in English | MEDLINE | ID: mdl-37217040

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is invasive cancer and the complex mechanisms underlying carcinogenesis remain unclear. Extracellular vesicles (EVs), secreted by most cell types, serve as a critical factor in tumorigenesis via intercellular communications. Our study aims to investigate the cellular origin of EVs in ESCC, and unveil the unknown molecular and cellular mechanisms underlying cell-cell communications. Six ESCC patients were enrolled and single-cell RNA sequencing (scRNA-seq) analyses were conducted to screen different cell subpopulations. The genetic origin of EVs was tracked using the supernatant from different cellular extracts. Nanoparticle tracking analysis (NTA), western blot analysis, and transmission electron microscopy (TEM) were performed for validation. Using scRNA-seq analysis, eleven cell subpopulations were identified in ESCC. Differences in gene expression in EVs between malignant and non-malignant esophageal tissues were found. Our findings demonstrated that epithelial cells releasing EVs were the most prevalent in malignant tissues, while endothelial cells and fibroblasts releasing EVs were predominant in non-malignant tissues. Furthermore, the high levels of gene expression in EVs released from these cells were correlated significantly with a worse prognosis. Our findings revealed the genetic origin of EVs in malignant and non-malignant esophageal tissues and provided a comprehensive overview of the associated cell-cell interactions in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Extracellular Vesicles , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/metabolism , Endothelial Cells/metabolism , Cell Line, Tumor , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , RNA , Gene Expression Regulation, Neoplastic , Cell Proliferation
20.
Phytomedicine ; 114: 154782, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990009

ABSTRACT

BACKGROUND: Gout is a crystal related arthropathy caused by monosodium urate deposition. At present, the identification of appropriate treatments and new drugs to reduce serum uric acid levels and gout risk is a major research area. PURPOSE: Theaflavins are naturally occurring compounds characterized by a benzodiazepine skeleton. The significant benefits of theaflavins have been well documented. A large number of studies have been carried out and excellent anti-gout results have been achieved in recent years. STUDY DESIGN: A comprehensive analysis of the mechanism of the anti-gout effect of theaflavins is presented through a literature review and network pharmacology prediction, and strategies for increasing the bioavailability of theaflavins are summarized. METHODS: In this review, the active components and pharmacological mechanisms of theaflavins in the treatment of gout were summarized, and the relationship between theaflavins and gout, the relevant components, and the potential mechanisms of anti-gout action were clarified by reviewing the literature on the anti-gout effects of theaflavins and network pharmacology. RESULTS: Theaflavins exert anti-gout effects by down regulating the gene and protein expression of glucose transporter 9 (GLUT9) and uric acid transporter 1 (URAT1), while upregulating the mRNA expression levels of organic anion transporter 1 (OAT1), organic cation transporter N1 (OCTN1), organic cation transporters 1/2 (Oct1/2), and organic anion transporter 2 (OAT2). Network pharmacology prediction indicate that theaflavins can regulate the AGE-RAGE and cancer signaling pathways through ATP-binding cassette subfamily B member 1 (ABCB1), recombinant mitogen activated protein kinase 14 (MAPK14), telomerase reverse tranase (TERT), signal transducer and activator of transcription 1 (STAT1), matrix metalloproteinase 2 (MMP2), B-cell lymphoma-2 (BCL2), and matrix metalloproteinase 14 (MMP14) targets for anti-gout effects. CONCLUSION: This review presents the mechanisms of anti-gout action of theaflavins and strategies for improving the bioavailability of theaflavins, as well as providing research strategies for anti-gout treatment measures and the development of novel anti-gout drugs.


Subject(s)
Gout , Humans , Animals , Gout/drug therapy , Gout/metabolism , Hyperuricemia/etiology , Uric Acid/metabolism , Gout Suppressants/chemistry , Gout Suppressants/pharmacokinetics , Gout Suppressants/therapeutic use , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL
...