Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Front Microbiol ; 8: 1982, 2017.
Article in English | MEDLINE | ID: mdl-29081769

ABSTRACT

The purpose of this study was to investigate the prevalence and genetic elements of oqxAB among Escherichia coli isolates from animals, retail meat, and humans (patients with infection or colonization) in Guangzhou, China. A total of 1,354 E. coli isolates were screened for oqxAB by PCR. Fifty oqxAB-positive isolates were further characterized by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), S1-PFGE, genetic environment analysis, plasmid replicon typing, and plasmid sequencing. oqxAB was detected in 172 (33.79%), 60 (17.34%), and 90 (18.07%) E. coli isolates from animal, food, and human, respectively. High clonal diversity was observed among oqxAB-positive isolates. In 21 oqxAB-containing transformants, oqxAB was flanked by two IS26 elements in the same orientation, formed a composite transposon Tn6010 in 19 transformants, and was located on plasmids (33.3~500 kb) belonging to IncN1-F33:A-:B- (n = 3), IncHI2/ST3 (n = 3), F-:A18:B- (n = 2), F-:A-:B54 (n = 2), or others. Additionally, oqxAB was co-located with multiple resistance genes on the same plasmid, such as aac(6')-Ib-cr and/or qnrS, which were identified in two F-:A18:B- plasmids from pigs, and blaCTX-M-55, rmtB, fosA3, and floR, which were detected in two N1-F33:A-:B- plasmids from patients. The two IncHI2/ST3 oqxAB-bearing plasmids, pHNLDF400 and pHNYJC8, which were isolated from human patient and chicken meat, respectively, contained a typical IncHI2-type backbone, and were similar to each other with 2-bp difference, and also showed 99% identity to the Salmonella Typhimurium oqxAB-carrying plasmids pHXY0908 (chicken) and pHK0653 (human patient). Horizontal transfer mediated by mobile elements may be the primary mechanism underlying oqxAB spread in E. coli isolates obtained from various sources in Guangzhou, China. The transmission of identical oqxAB-carrying IncHI2 plasmids between food products and humans might pose a serious threat to public health.

2.
J Antimicrob Chemother ; 72(5): 1293-1302, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28160469

ABSTRACT

Objectives: To investigate the impact of plasmid-borne oqxAB genes on the development of fluoroquinolone resistance, mutations and bacterial fitness in Escherichia coli . Methods: MICs and mutation prevention concentrations were compared among E. coli strain TOP10 and two corresponding transformants harbouring the OqxAB-encoding plasmids. Mutants were selected by serial passages with the 0.5-fold MIC of ciprofloxacin, and were randomly selected to determine mutations. Bacterial fitness was evaluated by competition assays in vitro and in vivo . Results: The oqxAB -carrying plasmids contributed to a 4-8-fold increase in the ciprofloxacin MIC and increased the ciprofloxacin mutation prevention concentration by 8-16-fold. The MIC of ciprofloxacin for the two transformants increased faster than that of E. coli TOP10 by serial passaging. Novel mutations in gyrB (A468P or F458V) were first observed. Mutations in gyrA were distributed at codons 87 and 83 in the two transformants, whereas mutation A119E in gyrA dominated in the TOP10 mutants. Although the two oqxAB -bearing plasmids caused a decrease in fitness in vitro , their fitness increased when combined with more than one chromosomal mutation, and clear biological benefits were observed in vivo . The mutations in gyrB were associated with a fitness cost, which could be compensated for by additional mutations. The novel mutation gyrA ΔS83 significantly reduced biological fitness both in vitro and in vivo , and was thus quickly replaced by more beneficial mutations in the population. Conclusions: The possession of plasmid-borne oqxAB may facilitate the evolution of fluoroquinolone resistance, and the fitness cost of OqxAB-encoding plasmids could be compensated by additional chromosomal mutations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Fluoroquinolones/pharmacology , Genetic Fitness , Plasmids , Codon , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Genes, MDR , Humans , Microbial Sensitivity Tests , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL