Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Front Neurosci ; 18: 1210447, 2024.
Article in English | MEDLINE | ID: mdl-38356648

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.

2.
iScience ; 26(10): 107913, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810220

ABSTRACT

N-acetyl aspartyl-glutamate (NAAG) is easily inactivated for the hydrolysis of NAAG peptidase on the surface of glial cells, thereby losing its endogenous neuroprotective effect after traumatic brain injury. In this study, lentiviral vectors were used to over express/knock out NAAG synthetase II (Rimkla) in mouse embryonic neural stem cells (mNSCs) in vitro and these mNSCs were transplanted at the lesion site in a mouse model of controlled cortical impact (CCI). In vivo experiments showed that transplantation of mNSCs overexpressing Rimkla regulated glutamate-glutamine cycling between adjacent astrocytes and neurons in the subacute phase of CCI, thereby enhancing support for neuronal metabolism and promoting neuronal synaptic repair in the hippocampal CA3 region. Taken together, these findings demonstrate that transplantation of neural stem cells overexpressing Rimkla can effectively increase the NAAG concentration in local brain regions, which opens up new ideas for the maintenance of NAAG neuroprotective effects after TBI.

3.
Phytother Res ; 37(12): 5947-5957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748098

ABSTRACT

Therapy with chimeric antigen receptor T (CAR-T) cells involves using reformative T lymphocytes that have three domains, antigen recognition, transmembrane, and costimulating to achieve the therapeutic purpose. CAR-T therapy on malignant hematologic has been successful; however, its effectiveness in patients with solid tumors is still limited. Few studies exist confirming the efficacy of natural products on the function of CAR-T cells. The purpose of this study is to assess the effect of gastrodin (GAS) on CAR-T cells that target interleukin-13 receptor α2 antigen (IL-13Rα2 CAR-T) in the brain against glioblastoma multiforme. Migration of IL-13Rα2 CAR-T was evaluated using the Transwell assay. The effects of GAS on IL-13Rα2 CAR-T cells were assessed both in vitro and situ glioblastoma models. The cytoskeleton was stained with Fluorescein 5-isothiocyanate (FITC)-phalloidin. Cytokines expression in cells was determined by flow cytometry and ELISA assay. Western blotting was used to detect the S1P1 expression, and quantitative PCR assay was used to determine the IL-13Rα2 gene level. GAS increased the migratory and destructive capacity of IL-13Rα2 CAR-T cells with no effect on cytokine release. By increasing the expression of S1P1, GAS encouraged the entry of CAR-T cells into the brain and bone marrow. Transcriptomic analysis revealed that genes related to skeletal migration such as add2 and gng8 showed increased expression in GAS-treated CAR-T cells. We found that GAS synergistically improves the mobility of IL-13Rα2 CAR-T, enhancing their ability to recognize the tumor antigen of glioblastoma, which could be advantageous for the application of CAR-T for the treatment of solid tumors.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , T-Lymphocytes , Brain/metabolism
4.
Heliyon ; 9(8): e18485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560709

ABSTRACT

Oxidative stress plays an important role in the secondary neuronal damage after traumatic brain injury (TBI). Inhibition of histone deacetylases (HDACs) has been shown to reduce reactive oxygen species (ROS) production and NADPH oxidases (Nox) transcription. Vorinostat is an HDAC inhibitor. This study investigated the influence of vorinostat on neurological impairments in a rat model of TBI induced by lateral fluid percussion injury (LFPI). Different concentrations of vorinostat (5, 25, and 50 mg/kg) were administered via intraperitoneal injection. Neurological deficits were evaluated by modified neurological severity scoring (mNSS). Evans blue extravasation was performed to assess blood-brain barrier (BBB) permeability. Morris water maze assay was performed to evaluate cognitive impairments. Protein levels were evaluated through ELISA and Western blot. Vorinostat was found to attenuate TBI induced brain edema and BBB permeability in rats. Vorinostat also alleviated TBI-induced neurological impairments and anxiety-like behavior in rats. Vorinostat attenuated TBI induced apoptosis and oxidative stresses in ipsilateral injury cortical tissue. Vorinostat inhibited HDAC1, HDAC3, and Nox4 while activated AMPK signaling in ipsilateral injury cortical tissue. In conclusion, administration of vorinostat alleviates the secondary damage of TBI in rat model. The oxidative stress in the ipsilateral injury cortical tissues is decreased by the inhibition of Nox4 expression and the activation of AMPK.

5.
Biochem Cell Biol ; 101(6): 523-530, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37602474

ABSTRACT

NDUFA4 is a component of respiratory chain-oxidative phosphorylation pathway. NDUFA4 is highly expressed in tumor tissues, but little is known about the function of NDUFA4 in head and neck paraganglioma (HNPGL). We examined NDUFA4 expression in tissues from 10 HNPGL patients and 6 controls using qRT-PCR and Western blotting. NDUFA4 knockdown PGL-626 cells were established by using lentivirus infection and puromycin screening. Cell viability, ATP production, lipid reactive oxygen species, and mitochondrial membrane potential assays were performed to investigate the ferroptotic effects in NDUFA4 deficiency HNPGL cancer cells. Xenograft mouse model was created to detect the synergetic antitumor action between NDUFA4 deficiency and Metformin. NDUFA4 was upregulated in tumor tissues of HNPGL patients. NDUFA4 knockdown impaired the assembly of mitochondrial respiratory chain complexes and decreased the production of ATP and reduced cancer cell viability. Mechanistically, NDUFA4 knockdown increased cell ferroptosis, which further promoted Metformin-induced ferroptosis in PGL-626 cells. Therefore, NDUFA4 deficiency enhanced Metformin-mediated inhibition of the HNPGL progression in mice. In conclusion, NDUFA4 promotes the progression of HNPGL, and NDUFA4 knockdown enhances Metformin-mediated inhibition of the HNPGL progression in a mouse model.


Subject(s)
Ferroptosis , Metformin , Paraganglioma , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Paraganglioma/drug therapy , Paraganglioma/genetics , Metformin/pharmacology , Adenosine Triphosphate , Electron Transport Complex IV/metabolism
6.
CNS Neurosci Ther ; 29(12): 3786-3801, 2023 12.
Article in English | MEDLINE | ID: mdl-37349952

ABSTRACT

MAIN PROBLEM: N-acetylaspartylglutamate (NAAG) has neuroprotective effects in traumatic brain injury (TBI) by activating metabotropic glutamate receptor 3 (mGluR3) and reducing glutamate release. Glutamate carboxypeptidase II (GCPII) is the primary enzyme responsible for the hydrolysis of NAAG. It remains unclear whether glutamate carboxypeptidase III (GCPIII), a homolog of GCPII, can partially compensate for GCPII's function. METHODS: GCPII-/- , GCPIII-/- , and GCPII/III-/- mice were generated using CRISPR/Cas9 technology. Mice brain injury model was established through moderate controlled cortical impact (CCI). The relationship between GCPII and GCPIII was explored by analyzing injury response signals in the hippocampus and cortex of mice with different genotypes at the acute (1 day) and subacute (7 day) phase after TBI. RESULTS: In this study, we found that deletion of GCPII reduced glutamate production, excitotoxicity, and neuronal damage and improved cognitive function, but GCPIII deletion had no significant neuroprotective effect. Additionally, there was no significant difference in the neuroprotective effect between the combination of GCPII and GCPIII deletion and GCPII deletion alone. CONCLUSION: These results suggest that GCPII inhibition may be a therapeutic option for TBI, and that GCPIII may not act as a complementary enzyme to GCPII in this context.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Neuroprotective Agents , Animals , Mice , Brain Injuries, Traumatic/genetics , Glutamate Carboxypeptidase II/genetics , Glutamic Acid , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
7.
Cancers (Basel) ; 15(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37190157

ABSTRACT

The alpha-thalassemia mental retardation X-linked (ATRX) syndrome protein is a chromatin remodeling protein that primarily promotes the deposit of H3.3 histone variants in the telomere area. ATRX mutations not only cause ATRX syndrome but also influence development and promote cancer. The primary molecular characteristics of ATRX, including its molecular structures and normal and malignant biological roles, are reviewed in this article. We discuss the role of ATRX in its interactions with the histone variant H3.3, chromatin remodeling, DNA damage response, replication stress, and cancers, particularly gliomas, neuroblastomas, and pancreatic neuroendocrine tumors. ATRX is implicated in several important cellular processes and serves a crucial function in regulating gene expression and genomic integrity throughout embryogenesis. However, the nature of its involvement in the growth and development of cancer remains unknown. As mechanistic and molecular investigations on ATRX disclose its essential functions in cancer, customized therapies targeting ATRX will become accessible.

8.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835655

ABSTRACT

The brain-gut axis (BGA) is a significant bidirectional communication pathway between the brain and gut. Traumatic brain injury (TBI) induced neurotoxicity and neuroinflammation can affect gut functions through BGA. N6-methyladenosine (m6A), as the most popular posttranscriptional modification of eukaryotic mRNA, has recently been identified as playing important roles in both the brain and gut. However, whether m6A RNA methylation modification is involved in TBI-induced BGA dysfunction is not clear. Here, we showed that YTHDF1 knockout reduced histopathological lesions and decreased the levels of apoptosis, inflammation, and oedema proteins in brain and gut tissues in mice after TBI. We also found that YTHDF1 knockout improved fungal mycobiome abundance and probiotic (particularly Akkermansia) colonization in mice at 3 days post-CCI. Then, we identified the differentially expressed genes (DEGs) in the cortex between YTHDF1-knockout and WT mice. These genes were primarily enriched in the regulation of neurotransmitter-related neuronal signalling pathways, inflammatory signalling pathways, and apoptotic signalling pathways. This study reveals that the ITGA6-mediated cell adhesion molecule signalling pathway may be the key feature of m6A regulation in TBI-induced BGA dysfunction. Our results suggest that YTHDF1 knockout could attenuate TBI-induced BGA dysfunction.


Subject(s)
Brain Injuries, Traumatic , Brain-Gut Axis , RNA-Binding Proteins , Animals , Mice , Brain/pathology , Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Inflammation/pathology , RNA-Binding Proteins/metabolism
9.
Front Immunol ; 13: 1040286, 2022.
Article in English | MEDLINE | ID: mdl-36505503

ABSTRACT

Background: Sepsis is a heterogeneous syndrome with high morbidity and mortality. Optimal and effective classifications are in urgent need and to be developed. Methods and results: A total of 1,936 patients (sepsis samples, n=1,692; normal samples, n=244) in 7 discovery datasets were included to conduct weighted gene co-expression network analysis (WGCNA) to filter out candidate genes related to sepsis. Then, two subtypes of sepsis were classified in the training sepsis set (n=1,692), the Adaptive and Inflammatory, using K-means clustering analysis on 90 sepsis-related features. We validated these subtypes using 617 samples in 5 independent datasets and the merged 5 sets. Cibersort method revealed the Adaptive subtype was related to high infiltration levels of T cells and natural killer (NK) cells and a better clinical outcome. Immune features were validated by single-cell RNA sequencing (scRNA-seq) analysis. The Inflammatory subtype was associated with high infiltration of macrophages and a disadvantageous prognosis. Based on functional analysis, upregulation of the Toll-like receptor signaling pathway was obtained in Inflammatory subtype and NK cell-mediated cytotoxicity and T cell receptor signaling pathway were upregulated in Adaptive group. To quantify the cluster findings, a scoring system, called, risk score, was established using four datasets (n=980) in the discovery cohorts based on least absolute shrinkage and selection operator (LASSO) and logistic regression and validated in external sets (n=760). Multivariate logistic regression analysis revealed the risk score was an independent predictor of outcomes of sepsis patients (OR [odds ratio], 2.752, 95% confidence interval [CI], 2.234-3.389, P<0.001), when adjusted by age and gender. In addition, the validation sets confirmed the performance (OR, 1.638, 95% CI, 1.309-2.048, P<0.001). Finally, nomograms demonstrated great discriminatory potential than that of risk score, age and gender (training set: AUC=0.682, 95% CI, 0.643-0.719; validation set: AUC=0.624, 95% CI, 0.576-0.664). Decision curve analysis (DCA) demonstrated that the nomograms were clinically useful and had better discriminative performance to recognize patients at high risk than the age, gender and risk score, respectively. Conclusions: In-depth analysis of a comprehensive landscape of the transcriptome characteristics of sepsis might contribute to personalized treatments and prediction of clinical outcomes.


Subject(s)
Machine Learning , Sepsis , Humans , Prognosis , Sepsis/genetics , Risk Factors , Nomograms
10.
Heliyon ; 8(10): e11022, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281400

ABSTRACT

Gliomas typically have unfavorable prognosis, due to late detection and interventions. However, effective biomarkers for early glioma diagnosis based on 5-hydroxymethylcytosines (5 hm C) in circulating cell-free DNA (cfDNA) are not currently available. 5 hm C profiles in GSE132118 set were subjected for establishment of diagnostic model using the LASSO (least absolute shrinkage and selection operator) algorithm. The 5 hm C-based models demonstrated great potency in differentiating healthy subjects from gliomas, with area under the curves (AUCs) > 0.91 in the training and validation sets. Moreover, the indicator performed well in combination with clinicopathological characteristics to differentiate glioblastomas (GBMs) from lower grade glioma (LGGs). Enrichment analysis on 5 hm C profiles displayed great correlation with glioma pathophysiology. The 5 hm C-derived biomarker might act as an effective and non-invasive measure in glioma screening.

11.
Front Immunol ; 13: 865020, 2022.
Article in English | MEDLINE | ID: mdl-36119086

ABSTRACT

MS4A6A has been recognized as being associated with aging and the onset of neurodegenerative disease. However, the mechanisms of MS4A6A in glioma biology and prognosis are ill-defined. Here, we show that MS4A6A is upregulated in glioma tissues, resulting in unfavorable clinical outcomes and poor responses to adjuvant chemotherapy. Multivariate Cox regression analysis suggested that MS4A6A expression can act as a strong and independent predictor for glioma outcomes (CGGA1: HR: 1.765, p < 0.001; CGGA2: HR: 2.626, p < 0.001; TCGA: HR: 1.415, p < 0.001; Rembrandt: HR: 1.809, p < 0.001; Gravendeel: HR: 1.613, p < 0.001). A protein-protein interaction (PPI) network revealed that MS4A6A might be coexpressed with CD68, CD163, and macrophage-specific signatures. Enrichment analysis showed the innate immune response and inflammatory response to be markedly enriched in the high MS4A6A expression group. Additionally, single-cell RNA sequencing (scRNA-seq) analysis revealed distinctive expression features for MS4A6A in macrophages in the glioma immune microenvironment (GIME). Immunofluorescence staining confirmed colocalization of CD68/MS4A6A and CD163/MS4A6A in macrophages. Correlation analysis revealed that MS4A6A expression is positively related to the tumor mutation burden (TMB) of glioma, displaying the high potential of applying MS4A6A to evaluate responsiveness to immunotherapy. Altogether, our research indicates that MS4A6A upregulation may be used as a promising and effective indicator for adjuvant therapy and prognosis assessment.


Subject(s)
Brain Neoplasms , Glioma , Neurodegenerative Diseases , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Glioma/pathology , Humans , Macrophages/metabolism , Neurodegenerative Diseases/metabolism , Prognosis , Tumor Microenvironment
12.
Antioxidants (Basel) ; 11(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36009239

ABSTRACT

The brain-gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.

13.
Front Immunol ; 13: 875648, 2022.
Article in English | MEDLINE | ID: mdl-35720326

ABSTRACT

Background: DNA damage response (DDR) proficiency is the principal mechanism of temozolomide (TMZ) resistance in glioma. Accumulating evidence has also suggested the determining role of DDR in anticancer immunity. We propose that a comprehensive investigation of the DDR landscape can optimize glioma treatment. Methods: We identified the pronounced enrichment of DDR in TMZ-resistant glioma cells by RNA sequencing. Nine differentially expressed genes between TMZ-sensitive/resistant glioma cells were selected to construct the DDR score through lasso regression analysis. Two glioma cohorts from TCGA and CGGA were interrogated to evaluate the predictive ability of DDR score. Multiple algorithms were applied to estimate the immunotherapeutic responses of two DDR phenotypes. Immunohistochemistry was used to determine the protein levels of PD-L1 and TGFß in glioma specimens. The oncoPredict package was employed to predict the candidate chemotherapy agents. Results: DDR score exhibited a robust prognostic capability in TCGA and CGGA cohorts and served as an independent predictive biomarker in glioma patients. Functional enrichment analyses revealed that high and low DDR score groups were characterized by distinct immune activity and metabolic processes. Elevated levels of infiltrating immune cells (including CD8+ T cells, CD4+ T cells, and dendritic cells) were observed in the high DDR score glioma. Further, high DDR scores correlated with increased mutation burden, up-regulated immune checkpoints, and tumor immunity activation, indicating a profound interplay between DDR score and glioma immunogenicity. In addition, PD-L1 and TGFß were overexpressed in recurrent glioma specimens compared with primary ones. Finally, we estimated that PI3K inhibitors may serve as latent regimens for high DDR score patients. Conclusion: Our study highlighted the promising prognostic role of DDR score in glioma. Individual assessment of DDR status for patients with glioma may provide new clues for developing immunotherapeutic strategies.


Subject(s)
B7-H1 Antigen , Glioma , DNA Damage , Glioma/genetics , Glioma/pathology , Glioma/therapy , Humans , Immunotherapy , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinases/genetics , Transforming Growth Factor beta/genetics
14.
J Neurophysiol ; 127(5): 1438-1444, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35443136

ABSTRACT

Accumulating evidence has demonstrated that histone deacetylase 1 (HDAC1) expression is statistically correlated with the severity of traumatic brain injury (TBI). However, the specific role of HDAC1 in the occurrence and development of TBI remains unclear. The lateral fluid percussion injury (LFPI) was used to conduct TBI mouse model in C57BL/6J and C57BL/6J-Hdac1em1cyagen mice. Western blot and qRT-PCR were performed to estimate the expression of HDAC1 and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in brain tissues. Modified neurological severity score (mNSS) and brain water content were analyzed to detect the neurological deficit. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were used to detect the oxidative stress. Oxidative stresses, HDAC1, and NOX4 expression were upregulated in the lesioned cortices tissues after TBI. HDAC1 protein expression was positively correlated with the NOX4 in TBI mouse. Hdac1 knockout attenuated brain edema and neurological dysfunction caused by TBI in mice. Hdac1 knockout inhibited the expressions of NOX4 induced by TBI and attenuated TBI-induced oxidative stress. HDAC1 expression is positively correlated with to NOX4-mediated oxidative stress in a TBI mouse model.NEW & NOTEWORTHY Traumatic brain injury causes increased oxidative stresses, histone deacetylase 1, and nicotinamide adenine dinucleotide phosphate oxidase 4 expression. Hdac1 knockout could attenuate the brain damage caused by traumatic brain injury. The results suggest that histone deacetylase 1 may be a therapeutic target for the treatment of traumatic brain injury.


Subject(s)
Brain Injuries, Traumatic , Histone Deacetylase 1/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Histone Deacetylase 1/genetics , Mice , Mice, Inbred C57BL , NADP/metabolism , NADP/therapeutic use , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidative Stress
15.
J Exp Clin Cancer Res ; 41(1): 140, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414100

ABSTRACT

BACKGROUND: Selectively utilizing alternative mechanisms to repair damaged DNA in essential factors deficient cancer facilitates tumor genetic evolution and contributes to treatment resistance. Synthetic lethality strategies provide a novel scenario to anticancer therapy with DNA repair protein mutation, such as glioma with DNA-PKcs-deficiency, a core factor crucial for non-homologous end joining (NHEJ) mediated DNA damage repair. Nevertheless, the clinical significance and molecular mechanisms of synthetic lethality function by interfering tumor DNA replication remain largely unexplored. METHODS: Cancer clinic treatment resistance-related replication core factors were identified through bioinformatics analysis and RNA-sequencing and verified in clinical specimens by immunoblotting and in situ Proximity Ligation Analysis (PLA). Then, in vitro and in vivo experiments, including visible single molecular tracking system were performed to determine functional roles, the molecular mechanisms and clinical significance of synthetic lethality on glioma tumors. RESULTS: Hyperactive DNA replication and regulator Flap endonuclease 1 (FEN1) provides high efficiency DNA double strand breaks (DSB) repair abilities preventing replication forks collapse during DNA replication which facilitate adaptation to selective pressures. DNA-PKcs deficient glioma cells are highly dependent on FEN1/BRCA1/RAD51 to survival and counteract replication stress. FEN1 protects perturbed forks from erroneous over-resection by MRE11 through regulating of BRCA1-RAD51 and WRN helicase, uncovering an essential genetic interaction between FEN1 and DNA-PKcs in mitigating replication-stress induced tumor genomic instability. Therapeutically, genetic depletion or molecular inhibition of FEN1 and DNA-PKcs perturb glioma progression. CONCLUSIONS: Our findings highlight an unanticipated synthetic interaction between FEN1/BRCA1/RAD51 and DNA-PKcs when dysfunction leads to incompatible with cell survival under conditions of interrupted replication progression by disrupting addictive alternative tumor evolution and demonstrate the applicability of combined FEN1 and DNA-PKcs targeting in the treatment of glioma.


Subject(s)
Flap Endonucleases , Glioma , DNA , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Glioma/genetics , Humans
16.
Cell Biosci ; 12(1): 40, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379347

ABSTRACT

BACKGROUND: Human adipose-derived stem cells (hADSCs) have been demonstrated to be a promising autologous stem cell source for treating various neuronal diseases. Our study indicated that hADSCs could be induced into neuron-like cells in a stepwise manner that are characterized by the positive expression of MAP2, SYNAPSIN 1/2, NF-200, and vGLUT and electrophysiological activity. We first primed hADSCs into neuron-like cells (hADSC-NCs) and then intracerebrally transplanted them into MCAO reperfusion mice to further explore their in vivo survival, migration, integration, fate commitment and involvement in neural circuit rebuilding. RESULTS: The hADSC-NCs survived well and transformed into MAP2-positive, Iba1- or GFAP-negative cells in vivo while maintaining some proliferative ability, indicated by positive Ki67 staining after 4 weeks. hADSC-NCs could migrate to multiple brain regions, including the cortex, hippocampus, striatum, and hypothalamus, and further differentiate into mature neurons, as confirmed by action potential elicitation and postsynaptic currents. With the aid of a cell suicide system, hADSC-NCs were proven to have functionally integrated into the hippocampal memory circuit, where they contributed to spatial learning and memory rescue, as indicated by LTP improvement and subsequent GCV-induced relapse. In addition to infarction size shrinkage and movement improvement, MCAO-reperfused mice showed bidirectional immune modulation, including inhibition of the local proinflammatory factors IL-1α, IL-1ß, IL-2, MIP-1ß and promotion proinflammatory IP-10, MCP-1, and enhancement of the anti-inflammatory factors IL-15. CONCLUSION: Overall, hADSC-NCs used as an intermediate autologous cell source for treating stroke can rebuild hippocampus neuronal circuits through cell replacement.

17.
J Cancer ; 13(2): 436-449, 2022.
Article in English | MEDLINE | ID: mdl-35069893

ABSTRACT

Background: Obesity is a strong risk factor for esophageal adenocarcinoma (EAC). Nevertheless, not all the patients with EAC are obesity, and a substantial proportion of obesity patients don't suffer from poor prognoses. The mechanisms behind the "obesity paradox" that uncouple obesity from dismal outcomes in EAC are unclear. This study aimed to explore the "obesity-guarding" genes (OGG) profiles and their prognostic values in patients with EAC. Methods: Gene expression data and clinical information of patients with EAC were downloaded from The Cancer Genome Atlas (TCGA) database. Enrichment analysis was used to explore the OGG functions and pathways. Cox regression analysis and nomogram model were performed to investigate the OGG prognostic values for overall survival (OS). In addition, relations between OGG and immune cells were assessed by the "CIBERSORT" algorithm and the Tumor IMmune Estimation Resource (TIMER) tool. Finally, the results were experimentally validated in real-world study. Results: A total of 69 OGG were retrieved, and 17 significantly differentially expressed genes (SDEG) were identified between normal and EAC tissues. Enrichment analysis showed the OGG were enriched in the mitochondrion-related and various receptor pathways. Univariate Cox regression results showed that the MCM6, ATXN2 and CSK were significantly associated with OS (P=0.036, 0.039, 0.046, respectively). Multivariate Cox regression analysis showed MCM6 and CSK were independent prognostic genes for OS (P=0.025, 0.041, respectively). Nomogram demonstrated that the OGG had good predictive abilities for the 1-, 2-, and 3-year OS. Immunity analysis demonstrated that OGG were significantly associated with immune cells (P <0.05). In addition, clinical correlation analysis revealed that the OGG had significant relations with clinical parameters (P <0.05). The experiment results confirmed that the SDEG were significantly different between normal and EAC tissues (P <0.05). Conclusions: We identified the OGG expression profiles that may uncouple obesity from poor survival in patients with EAC. They have prognostic values in predicting patients' OS, and may be exploited for prognostic biomarkers.

18.
Cell Mol Neurobiol ; 42(6): 1887-1895, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33728536

ABSTRACT

Astrocytes are crucial in neural protection after traumatic brain injury (TBI), a global health problem causing severe brain tissue damage. Astrocytic connexin 43 (Cx43), encoded by GJA1 gene, has been demonstrated to facilitate the protection of astrocytes to neural damage with unclear mechanisms. This study aims to explore the role of GJA1-20K/Cx43 axis in the astrocyte-neuron interaction after TBI and the underlying mechanisms. Primarily cultured cortical neurons isolated from embryonic C57BL/6 mice were treated by compressed nitrogen-oxygen mixed gas to simulate TBI-like damage in vitro. The transwell astrocyte-neuron co-culture system were constructed to recapitulate the interaction between the two cell types. Quantitative PCR was applied to analyze mRNA level of target genes. Western blot and immunofluorescence were conducted to detect target proteins expression. GJA1-20K overexpression significantly down-regulated the expression of phosphorylated Cx43 (p-Cx43) without affecting the total Cx43 protein level. Besides, GJA1-20K overexpression obviously enhanced the dendrite length, as well as the expression levels of function and synthesis-related factors of mitochondria in damaged neurons. GJA1-20K up-regulated functional Cx43 expression in astrocytes, which promoted mitochondria transmission from astrocytes to neurons which might be responsible to the protection of astrocyte to neurons after TBI-like damage in vitro.


Subject(s)
Brain Injuries, Traumatic , Connexin 43 , Animals , Astrocytes/metabolism , Brain Injuries, Traumatic/metabolism , Connexin 43/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Neurons/metabolism
19.
Front Genet ; 12: 743133, 2021.
Article in English | MEDLINE | ID: mdl-34956314

ABSTRACT

Background: Esophageal cancer is one of the most leading and lethal malignancies. Glycolysis and the tumor microenvironment (TME) are responsible for cancer progressions. We aimed to study the relationships between glycolysis, TME, and therapeutic response in esophageal adenocarcinoma (EAC). Materials and Methods: We used the ESTIMATE algorithm to divide EAC patients into ESTIMATE high and ESTIMATE low groups based on the gene expression data downloaded from TCGA. Weighted gene co-expression network analysis (WGCNA) and Gene Set Enrichment Analysis (GSEA) were performed to identify different glycolytic genes in the TME between the two groups. The prognostic gene signature for overall survival (OS) was established through Cox regression analysis. Impacts of glycolytic genes on immune cells were assessed and validated. Next, we conducted the glycolytic gene mutation analysis and drug therapeutic response analysis between the two groups. Finally, the GEO database was employed to validate the impact of glycolysis on TME in patients with EAC. Results: A total of 78 EAC patients with gene expression profiles and clinical information were included for analysis. Functional enrichment results showed that the genes between ESTIMATE high and ESTIMATE low groups (N = 39, respectively) were strongly related with glycolytic and ATP/ADP metabolic pathways. Patients in the low-risk group had probabilities to survive longer than those in the high-risk group (p < 0.001). Glycolytic genes had significant impacts on the components of immune cells in TME, especially on the T-cells and dendritic cells. In the high-risk group, the most common mutant genes were TP53 and TTN, and the most frequent mutation type was missense mutation. Glycolysis significantly influenced drug sensitivity, and high tumor mutation burden (TMB) was associated with better immunotherapeutic response. GEO results confirmed that glycolysis had significant impacts on immune cell contents in TME. Conclusion: We performed a comprehensive study of glycolysis and TME and demonstrated that glycolysis could influence the microenvironment and drug therapeutic response in EAC. Evaluation of the glycolysis pattern could help identify the individualized therapeutic regime.

20.
PLoS Genet ; 17(11): e1009869, 2021 11.
Article in English | MEDLINE | ID: mdl-34727106

ABSTRACT

The perturbations of protein-protein interactions (PPIs) were found to be the main cause of cancer. Previous PPI prediction methods which were trained with non-disease general PPI data were not compatible to map the PPI network in cancer. Therefore, we established a novel cancer specific PPI prediction method dubbed NECARE, which was based on relational graph convolutional network (R-GCN) with knowledge-based features. It achieved the best performance with a Matthews correlation coefficient (MCC) = 0.84±0.03 and an F1 = 91±2% compared with other methods. With NECARE, we mapped the cancer interactome atlas and revealed that the perturbations of PPIs were enriched on 1362 genes, which were named cancer hub genes. Those genes were found to over-represent with mutations occurring at protein-macromolecules binding interfaces. Furthermore, over 56% of cancer treatment-related genes belonged to hub genes and they were significantly related to the prognosis of 32 types of cancers. Finally, by coimmunoprecipitation, we confirmed that the NECARE prediction method was highly reliable with a 90% accuracy. Overall, we provided the novel network-based cancer protein-protein interaction prediction method and mapped the perturbation of cancer interactome. NECARE is available at: https://github.com/JiajunQiu/NECARE.


Subject(s)
Neoplasms/metabolism , Protein Interaction Mapping/methods , Protein Interaction Maps , Algorithms , Humans , Neoplasms/pathology , Prognosis , Protein Binding , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...