Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Microbiol ; 7(8): 1259-1269, 2022 08.
Article in English | MEDLINE | ID: mdl-35918420

ABSTRACT

Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the L-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, Rotavirus A and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Mammals , Pangolins , SARS-CoV-2/genetics
2.
BMC Biol ; 19(1): 67, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33832502

ABSTRACT

BACKGROUND: Trachypithecus leucocephalus, the white-headed langur, is a critically endangered primate that is endemic to the karst mountains in the southern Guangxi province of China. Studying the genomic and transcriptomic mechanisms underlying its local adaptation could help explain its persistence within a highly specialized ecological niche. RESULTS: In this study, we used PacBio sequencing and optical assembly and Hi-C analysis to create a high-quality de novo assembly of the T. leucocephalus genome. Annotation and functional enrichment revealed many genes involved in metabolism, transport, and homeostasis, and almost all of the positively selected genes were related to mineral ion binding. The transcriptomes of 12 tissues from three T. leucocephalus individuals showed that the great majority of genes involved in mineral absorption and calcium signaling were expressed, and their gene families were significantly expanded. For example, FTH1 primarily functions in iron storage and had 20 expanded copies. CONCLUSIONS: These results increase our understanding of the evolution of alkali tolerance and other traits necessary for the persistence of T. leucocephalus within an ecologically unique limestone karst environment.


Subject(s)
Colobinae , Alkalies , Animals , China , Genome , Presbytini , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL