Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.669
Filter
1.
J Clin Monit Comput ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305450

ABSTRACT

PURPOSE: Postoperative Delirium (POD) has an incidence of up to 65% in older patients undergoing cardiac surgery. We aimed to develop two dynamic nomograms to predict the risk of POD in older patients undergoing cardiac surgery. METHODS: This was a single-center retrospective cohort study, which included 531 older patients who underwent cardiac surgery from July 2021 to June 2022 at Nanjing First Hospital, China. Univariable and multivariable logistic regression were used to identify the significant predictors used when constructing the models. We evaluated the performances and accuracy, validated, and estimated the clinical utility and net benefit of the models using the receiver operating characteristic (ROC), the 10-fold cross-validation, and decision curve analysis (DCA). RESULTS: A total of 30% of the patients developed POD, the significant predictors in the preoperative model were ASA ( p < 0.001 OR = 3.220), cerebrovascular disease (p < 0.001 OR = 2.326), Alb (p < 0.037 OR = 0.946), and URE (p < 0.001 OR = 1.137), while for the postoperative model they were ASA (p = 0.044, OR = 1.737), preoperative MMSE score (p = 0.005, OR = 0.782), URE (p = 0.017 OR = 1.092), CPB duration (p < 0.001 OR = 1.010) and APACHE II (p < 0.001, OR = 1.353). The preoperative and postoperative models achieved satisfactory predictive performances, with AUC values of 0.731 and 0.799, respectively. The web calculators can be accessed at https://xxh152.shinyapps.io/Pre-POD/ and https://xxh152.shinyapps.io/Post-POD/ . CONCLUSION: We established two nomogram models based on the preoperative and postoperative time points to predict POD risk and guide the flexible implementation of possible interventions at different time points.

2.
Sci Total Environ ; 953: 176170, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39260471

ABSTRACT

Harmful algal blooms (HABs) increase with eutrophication depending on the nutrient structure (availability and ratios), but an unequivocal causal link between these factors is rarely established. Here, we provide support for the causal link between the nitrogen structure and physiological processes of Ulva prolifera as the causative species of Yellow Sea green tides (YSGTs) using in situ and laboratory experiments. The results showed that the components of nitrogen nutrients in seawater exhibited significant spatiotemporal variation. The concentration of NO3--N showed a notable decreasing trend from south to north. Sufficient dissolved inorganic nitrogen (DIN) induced increases in thalli nitrate reductase (NR) and glutamine synthetase (GS) activities. This could accelerate thalli uptake of nitrogen nutrients. The glutamate dehydrogenase (GDH) activity was significantly upregulated with the increasing proportion of dissolved organic nitrogen (DON) in seawater. The change in nitrogen structure regulated the activity of NR during the long-distance floating migration of the YSGTs. And the activity of NR could modulate the nitric oxide (NO) content in the thalli. NO was used as a signal molecule to enhance the antioxidant defense system of thalli. The efficient antioxidant system in the thalli could reduce oxidative stress and effectively maintain high photosynthetic activity. The findings deepen our understanding of the relationship between nitrogen structures and key biological processes in macroalgae. This study also suggest that NO can enhance key biological processes in U. prolifera under varying nitrogen structures.


Subject(s)
Harmful Algal Bloom , Nitrogen , Seawater , Ulva , Ulva/physiology , Nitrogen/metabolism , Seawater/chemistry , Nitrate Reductase/metabolism , Environmental Monitoring , China , Eutrophication , Edible Seaweeds
3.
Comput Struct Biotechnol J ; 23: 3327-3341, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39310281

ABSTRACT

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is a potent analytical technique utilized for identifying natural products from complex sources. However, due to the structural diversity, annotating LC-MS/MS data of natural products efficiently remains challenging, hindering the discovery process of novel active structures. Here, we introduce MassKG, an algorithm that combines a knowledge-based fragmentation strategy and a deep learning-based molecule generation model to aid in rapid dereplication and the discovery of novel NP structures. Specifically, MassKG has compiled 407,720 known NP structures and, based on this, generated 266,353 new structures using chemical language models for the discovery of potential novel compounds. Furthermore, MassKG demonstrates exceptional performance in spectra annotation compared to state-of-the-art algorithms. To enhance usability, MassKG has been implemented as a web server for annotating tandem mass spectral data (MS/MS, MS2) with a user-friendly interface, automatic reporting, and fragment tree visualization. Lastly, the interpretive capability of MassKG is comprehensively validated through composition analysis and MS annotation of Panax notoginseng, Ginkgo biloba, Codonopsis pilosula, and Astragalus membranaceus. MassKG is now accessible at https://xomics.com.cn/masskg.

4.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4118-4127, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307744

ABSTRACT

This article aims to investigate the effect of Zhuyu Pills on atherosclerosis(AS) and decipher the underlying mechanism. The mouse model of AS was established by feeding with a high-fat diet for 12 weeks. The 50 successfully modeled mice with the apolipoprotein E knockout(ApoE~(-/-)) were assigned by the random number table method into 5 groups(n=10): model, low-, medium-, and high-dose(130.54, 261.08, 522.16 mg·kg~(-1), respectively) Zhuyu Pills, and atorvastatin calcium(10.40 mg·kg~(-1)). Ten C57BL/6J mice were selected as the blank group. The blank group and model group were administrated with an equal volume of normal saline, and other groups were administrated with corresponding drugs once a day for 12 weeks. At the end of drug intervention, hematoxylin-eosin(HE) staining was employed to observe the pathological changes of fat in the aorta, liver, and epididymis of mice, and the proportion of aortic plaque area, fat area in epididymis, and nonalcoholic fatty liver disease activity score(NAS) were calculated. Lipid and collagen deposition in the aorta was observed by oil red O staining and Masson staining, respectively, and the proportions of lipid and collagen deposition areas were calculated. The serum levels of superoxide dismutase(SOD), malondialdehyde(MDA), glutathione peroxidase(GSH-Px), and iron ion were measured by colorimetry. The expression of cyclooxygenase 2(COX2), ferritin heavy chain 1(FTH1), cystine/glutamate reverse transporter solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4) in the aorta was detected by the immunofluorescence assay. The level of tumor protein 53(p53) in the aorta was detected by immunohistochemistry. The protein levels of p53 and SLC7A11 in the aorta were determined by Western blot. The mRNA levels of p53, SLC7A11, GPX4, FTH1, prostaglandin G/H synthase 2(PTGS2), and reduced nicotinamide adenine dinucleotide phosphate oxidase 1(NOX1) in mouse aorta were determined by real-time PCR. The results showed that compared with the blank group, the model group showcased enlarged aortic plaque area, increased collagen fiber deposition, liver lipid deposition, and lipid droplets, and enlarged epididymal adipocytes. In addition, the modeling elevated the levels of iron ion and MDA and lowered the levels of SOD and GSH-Px in the serum, promoted the expression of p53 and COX2, down-regulated the protein and mRNA levels of FTH1, SLC7A11, and GPX4, and up-regulated the mRNA levels of PTGS2 and NOX1 in the aorta. Compared with the model group, low-, medium-, and high-dose Zhuyu Pills and atorvastatin calcium reduced the aortic plaque area, collagen deposition, liver lipid deposition, lipid droplets, and epididymal adipocyte volume, lowered the levels of iron ion and MDA and elevated the levels of SOD and GSH-Px in the serum, inhibited the expression of p53 and COX2, up-regulated the protein and mRNA levels of FTH1, SLC7A11, and GPX4, and down-regulated the mRNA levels of PTGS2 and NOX1 in the aorta. In conclusion, Zhuyu Pills exert definite therapeutic effect on aortic plaque in AS mice by regulating the p53/SLC7A11 signaling pathway to alleviate oxidative damage and inhibit ferroptosis.


Subject(s)
Amino Acid Transport System y+ , Atherosclerosis , Drugs, Chinese Herbal , Ferroptosis , Oxidative Stress , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Humans , Male , Mice , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Ferroptosis/drug effects , Mice, Inbred C57BL , Oxidative Stress/drug effects , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
5.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4407-4419, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307777

ABSTRACT

The MYB(v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors is the largest class of genes among higher plant transcription factors, which can be divided into four subfamilies, with the R2R3-MYB being the most common subfamily type. R2R3-MYB transcription factors are widely involved in the regulation of organ development and secondary metabolite biosynthesis in plants. To investigate the role of R2R3-MYB family transcription factors in the synthesis of flavonoids and glandular trichome development in Artemisia argyi, this study screened and identified 92 R2R3-MYB transcription factors based on the whole genome data of A. argyi, and predicted their potential functions based on bioinformatics. The results showed that the amino acid lengths of the 92 transcription factors ranged from 168 to 547 aa, with relative molecular weights ranging from 19. 6 to 60. 5 kDa, all of which were hydrophilic proteins. Subcellular localization analysis showed that 89 AaMYB proteins were located in the nucleus, while three proteins were simultaneously located in the nucleus and cytoplasm. According to the classification of Arabidopsis R2R3-MYB family, the 92 A. argyi R2R3-MYB proteins were divided into 26 subfamilies, with similar gene structures within the same subfamily.Cis-acting element prediction results showed that light-responsive elements, methyl jasmonate elements, and abscisic acid elements were widely distributed in the promoter regions of R2R3-MYB genes. Transcriptome expression analysis results showed that the expression of AaMYB60, AaMYB63, and AaMYB86 in leaves was higher than that in stems and roots, indicating that these three transcription factors mainly function in leaves. Additionally, five candidate R2R3-MYB transcription factors involved in A. argyi flavonoid biosynthesis or glandular trichome development were selected through phylogenetic analysis. This study provides important genetic resources for the breeding of superior varieties and germplasm innovation of A. argyi in the future.


Subject(s)
Artemisia , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Artemisia/genetics , Artemisia/metabolism , Artemisia/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Amino Acid Sequence
6.
Front Genet ; 15: 1402856, 2024.
Article in English | MEDLINE | ID: mdl-39290984

ABSTRACT

Background: The chronic respiratory condition known as chronic obstructive pulmonary disease (COPD) was one of the main causes of death and disability worldwide. This study aimed to explore and elucidate new targets and molecular mechanisms of COPD by constructing competitive endogenous RNA (ceRNA) networks. Methods: GSE38974 and GSE106986 were used to select DEGs in COPD samples and normal samples. Cytoscape software was used to construct and present protein-protein interaction (PPI) network, mRNA-miRNA co-expression network and ceRNA network. The CIBERSORT algorithm and the Lasso model were used to screen the immune infiltrating cells and hub genes associated with COPD, and the correlation between them was analyzed. COPD cell models were constructed in vitro and the expression level of ceRNA network factors mediated by hub gene was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results: In this study, 852 differentially expressed genes were screened in the GSE38974 dataset, including 439 upregulated genes and 413 downregulated genes. Gene clustering analysis of PPI network results was performed using the Minimum Common Tumor Data Element (MCODE) in Cytoscape, and seven hub genes were screened using five algorithms in cytoHubba. CCL20 was verified as an important hub gene based on mRNA-miRNA co-expression network, GSE106986 database validation and the analysis of ROC curve results. Finally, we successfully constructed the circDTL-hsa-miR-330-3p-CCL20 network by Cytoscape. Immune infiltration analysis suggested that CCL20 can co-regulate immune cell migration and infiltration through chemokines CCL7 and CXCL3. In vitro experiments, the expression of circDTL and CCL20 was increased, while the expression of hsa-miR-330-3p was decreased in the COPD cell model. Conclusion: By constructing the circDTL-hsa-miR-330-3p-CCL20 network, this study contributes to a better understanding of the molecular mechanism of COPD development, which also provides important clues for the development of new therapeutic strategies and drug targets.

7.
Cancer Biol Ther ; 25(1): 2403205, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39295128

ABSTRACT

Objective Myeloma-related bone disease (MBD) is one of the most common complications of multiple myeloma (MM). This study aims to investigate the correlation between serum bone metabolism indexes (BMIs), the clinical characteristics and prognosis of newly diagnosed MM (NDMM) patients. METHODS: The serum BMIs of 148 patients with NDMM in a single hematological disease treatment center from April 2014 to December 2019 were analyzed retrospectively, including type I collagen amino terminal elongation peptide (PINP), ß-C-terminal telopeptide of type I collagen (ß-CTX) and N-terminal osteocalcin (N-MID). Other clinical indexes were simultaneously collected and the degree of bone damage in patients was evaluated. We explored the effect of serum BMIs on the prognosis and identified independent prognostic factors. Another 77 NDMM patients from April 2018 to February 2021 served as the validation cohort. RESULTS: The area under the curve (AUC) predicted by ß-C-terminal telopeptide of type I collagen (ß-CTX), type I collagen amino terminal elongation peptide (PINP), and N-terminal osteocalcin (N-MID) for overall survival (OS) were 0.708, 0.613, and 0.538, respectively. Patients with high serum levels had shorter OS (p < .001, p = .004, p = .027, respectively). Cox multivariate analysis indicated that serum ß- CTX、lactic dehydrogenase、hemoglobin and the degree of bone injury were independent prognostic factors. A COX regression model was established with a C-index of 0.782 and validated with a C-index of 0.711. CONCLUSION: The serum BMIs are correlated with the patients' OS, and ß- CTX can be an independent prognostic factor.


Subject(s)
Bone Diseases , Multiple Myeloma , Humans , Multiple Myeloma/mortality , Multiple Myeloma/blood , Multiple Myeloma/metabolism , Male , Female , Middle Aged , Prognosis , Aged , Bone Diseases/etiology , Bone Diseases/mortality , Bone Diseases/blood , Bone Diseases/metabolism , Retrospective Studies , Collagen Type I/blood , Collagen Type I/metabolism , Bone and Bones/metabolism , Bone and Bones/pathology , Biomarkers/blood , Osteocalcin/blood , Osteocalcin/metabolism , Adult , Aged, 80 and over , Peptides
8.
Front Pediatr ; 12: 1400110, 2024.
Article in English | MEDLINE | ID: mdl-39318617

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition that significantly impacts the mental, emotional, and social development of children. Early screening for ASD typically involves the use of a series of questionnaires. With answers to these questionnaires, healthcare professionals can identify whether a child is at risk for developing ASD and refer them for further evaluation and diagnosis. CHAT-23 is an effective and widely used screening test in China for the early screening of ASD, which contains 23 different kinds of questions. Methods: We have collected clinical data from Wuxi, China. All the questions of CHAT-23 are regarded as different kinds of features for building machine learning models. We introduce machine learning methods into ASD screening, using the Max-Relevance and Min-Redundancy (mRMR) feature selection method to analyze the most important questions among all 23 from the collected CHAT-23 questionnaires. Seven mainstream supervised machine learning models were built and experiments were conducted. Results: Among the seven supervised machine learning models evaluated, the best-performing model achieved a sensitivity of 0.909 and a specificity of 0.922 when the number of features was reduced to 9. This demonstrates the model's ability to accurately identify children for ASD with high precision, even with a more concise set of features. Discussion: Our study focuses on the health of Chinese children, introducing machine learning methods to provide more accurate and effective early screening tests for autism. This approach not only enhances the early detection of ASD but also helps in refining the CHAT-23 questionnaire by identifying the most relevant questions for the diagnosis process.

9.
Abdom Radiol (NY) ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225717

ABSTRACT

BACKGROUND: The expansion of function-preserving surgery became possible due to a more profound understanding of gastric cancer (GC), and T1N + or T2N + gastric cancer patients might be potential beneficiaries. However, ways to evaluate the possibility of function-preserving pylorus surgery are still unknown. METHODS: A total of 288 patients at Renji Hospital and 58 patients at Huadong Hospital, pathologically diagnosed with gastric cancer staging at T1 and T2 with tumors located in the upper two-thirds of the stomach, were retrospectively enrolled from March 2015 to October 2022. Tumor regions of interest (ROIs) were manually delineated on bi-phase CT images, and a nomogram was built and evaluated. RESULTS: The radiomic features distributed differently between positive and negative pLNm groups. Two radiomic signatures (RS1 and RS2) and one clinical signature were constructed. The radiomic signatures exhibited good performance for discriminating pLNm status in the test set. The three signatures were then combined into an integrated nomogram (IN). The IN showed good discrimination of pLNm in the Renji cohort (AUC 0.918) and the Huadong cohort (AUC 0.649). The verification models showed high values. CONCLUSION: For GC patients with T1 and T2 tumors located in the upper two-thirds of the stomach, a nomogram was successfully built for predicting pylorus lymph node metastasis, which would guide the surgical indication extension of conservative gastrectomies.

10.
Heliyon ; 10(16): e35528, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229502

ABSTRACT

Rationale and objectives: We constructed a dual-energy computed tomography (DECT)-based model to assess cervical lymph node metastasis (LNM) in patients with laryngeal squamous cell carcinoma (LSCC). Materials and methods: We retrospectively analysed 164 patients with LSCC who underwent preoperative DECT from May 2019 to May 2023. The patients were randomly divided into training (n = 115) and validation (n = 49) cohorts. Quantitative DECT parameters of the primary tumours and their clinical characteristics were collected. A logistic regression model was used to determine independent predictors of LNM, and a nomogram was constructed along with a corresponding online model. Model performance was assessed using the area under the curve (AUC) and the calibration curve, and the clinical value was evaluated using decision curve analysis (DCA). Results: In total, 64/164 (39.0 %) patients with LSCC had cervical LNM. Independent predictors of LNM included normalized iodine concentration in the arterial phase (odds ratio [OR]: 8.332, 95 % confidence interval [CI]: 2.813-24.678, P < 0.001), normalized effective atomic number in the arterial phase (OR: 5.518, 95 % CI: 1.095-27.818, P = 0.002), clinical T3-4 stage (OR: 5.684, 95 % CI: 1.701-18.989, P = 0.005), and poor histological grade (OR: 5.011, 95 % CI: 1.003-25.026, P = 0.049). These predictors were incorporated into the DECT-based nomogram and the corresponding online model, showing good calibration and favourable performance (training AUC: 0.910, validation AUC: 0.918). The DCA indicated a significant clinical benefit of the nomogram for estimating LNM. Conclusions: DECT parameters may be useful independent predictors of LNM in patients with LSCC, and a DECT-based nomogram may be helpful in clinical decision-making.

11.
J Chemother ; : 1-15, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39282901

ABSTRACT

Better in vitro models are needed to identify active drugs to treat pancreatic adenocarcinoma (PAC) patients. We used 3D hanging drop cultures to produce spheroids from five PAC cell lines and tested nine FDA-approved drugs in clinical use. All PAC cell lines in 2D culture were sensitive to three drugs (gemcitabine, docetaxel and nab-paclitaxel), however most PAC (4/5) 3D spheroids acquired profound chemoresistance even at 10 µM. In contrast, spheroids retained sensitivity to the investigational drug triptolide, which induced apoptosis. The acquired chemoresistance was also transiently retained when cells were placed back into 2D culture and six genes potentially associated with chemoresistance were identified by microarray and confirmed using quantitative RT-PCR. We demonstrate the additive effect of gemcitabine and erlotinib, from the 12 different combinations of nine drugs tested. This comprehensive study shows spheroids as a useful multicellular model of PAC for drug screening and elucidating the mechanism of chemoresistance.

12.
Curr Drug Deliv ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39289947

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) poses a major healthcare burden globally. Traditional Chinese medicine formula Bushen Jianpi (BSJP) recipe shows inhibitory effects on HCC but suffers from low bioavailability. This study aims to develop a BSJP-loaded liposome (BSJP@Lip) for targeted HCC treatment. METHODS: BSJP@Lip was prepared using a microfluidic device. Particle characterization included size, morphology, drug loading, encapsulation efficiency, and release kinetics analysis. In vitro cytotoxicity, cellular uptake, apoptosis, and protein expression were evaluated in hepG2, Smmc-7721, and hepa 1-6 hepatic cancer cell lines treated with BSJP@Lip. RESULTS: BSJP@Lip nanoparticles showed a uniform spherical shape with an average size of 50 nm and zeta potential at around -2.24 mV. They significantly inhibited cell viability and induced apoptosis in a dose-dependent manner compared with traditional decoction formulations. Enhanced cellular uptake of BSJP@Lip increased the expression of proinflammatory factors IL-18 and NLRP3. CONCLUSION: BSJP@Lip nanoparticles were found to be efficiently internalized by hepatic cancer cell lines, resulting in a dose-dependent inhibition of cell viability and induction of apoptosis. This effect was accompanied by the upregulation of IL-18 and NLRP3.

13.
Arch Toxicol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259283

ABSTRACT

This study investigated the impact of PM2.5 on promoting EMT in PM2.5-induced pulmonary fibrosis (PF) development and explored molecular mechanisms of the IL-9/STAT3/Snail/TWIST1 signaling pathway in PF owing to PM2.5. Four groups of male SD rats were formed: control (0 mg/kg.bw), low (1 mg/kg.bw), medium (5 mg/kg.bw), and high-dose (25 mg/kg.bw) PM2.5 groups. Experimental rats were subjected to PM2.5 exposure via intratracheal instillation, given once weekly for 16 weeks. 24 h after the final exposure, blood, BALF, and lung tissues were collected. Pulmonary epithelial cells underwent cultivation and exposure to varying PM2.5 concentrations with/without inhibitors for 24 h, after which total protein was extracted for relevant protein assays. The findings demonstrated that PM2.5 damaged lung tissue to different degrees and led to PF in rats. Rats subjected to PM2.5 exposure exhibited elevated concentrations of IL-9 protein in both serum and BALF, and elevated levels of IL-9 and its receptor, IL-9R, in lung tissues, compared to control counterparts. Furthermore, PM2.5-exposed groups demonstrated significantly augmented protein levels of p-STAT3, Snail, TWIST1, Vimentin, COL-I, and α-SMA, while displaying notably diminished levels of E-Cadherin compared to control group. The same findings were observed in PM2.5-treated cells. In BEAS-2B cells co-treated with Stattic (STAT3 inhibitor) and PM2.5, the opposite results occurred. Similar results were obtained for cells co-treated with IL-9-neutralizing antibody and PM2.5. Our findings suggest PM2.5 mediates PF development by promoting IL-9 expression, leading to STAT3 phosphorylation and upregulation of Snail and TWIST1 expression, triggering EMT occurrence and progression in lung epithelial cells.

14.
Trop Med Infect Dis ; 9(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39195618

ABSTRACT

Klebsiella variicola is an opportunistic pathogen often misidentified as Klebsiella pneumoniae, leading to misdiagnoses and inappropriate treatment in clinical settings. The genetic and molecular characteristics of clinically isolated K. variicola remain largely unexplored. We aim to fill this knowledge gap by examining the genomic properties of and evolutionary relationships between clinical isolates of K. variicola. The genomic data of 70 K. variicola strains were analyzed using whole-genome sequencing. A phylogenetic tree was generated based on the gene sequences from these K. variicola strains and public databases. Among the K. variicola strains, the drug resistance genes with the highest carrying rates were beta-lactamase and aminoglycoside. Locally isolated strains had a higher detection rate for virulence genes than those in public databases, with yersiniabactin genes being the most prevalent. The K locus types and MLST subtypes of the strains exhibited a dispersed distribution, with O3/O3a being the predominant subtype within the O category. In total, 28 isolates carried both IncFIB(K)_Kpn3 and IncFII_pKP91 replicons. This study underscores the importance of developing more effective diagnostic tools and therapeutic strategies for K. variicola infections. The continued surveillance and monitoring of K. variicola strains is essential for understanding the epidemiology of infections and informing public health strategies.

15.
J Nanobiotechnology ; 22(1): 478, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135099

ABSTRACT

PURPOSE OF REVIEW: Atherosclerosis, a highly pathogenic and lethal disease, is difficult to locate accurately via conventional imaging because of its scattered and deep lesions. However, second near-infrared (NIR-II) nanomaterials show great application potential in the tracing of atherosclerotic plaques due to their excellent penetration and angiographic capabilities. RECENT FINDINGS: With the development of nanotechnology, among many nanomaterials available for the visual diagnosis and treatment of cardiovascular diseases, optical nanomaterials provide strong support for various biomedical applications because of their advantages, such as noninvasive, nondestructive and molecular component imaging. Among optical nanomaterials of different wavelengths, NIR-II-range (900 ~ 1700 nm) nanomaterials have been gradually applied in the visual diagnosis and treatment of atherosclerosis and other vascular diseases because of their deep biological tissue penetration and limited background interference. This review explored in detail the prospects and challenges of the biological imaging and clinical application of NIR-II nanomaterials in treating atherosclerosis.


Subject(s)
Atherosclerosis , Nanostructures , Atherosclerosis/diagnostic imaging , Humans , Nanostructures/chemistry , Animals , Infrared Rays , Plaque, Atherosclerotic/diagnostic imaging , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods
16.
Nat Commun ; 15(1): 6711, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112487

ABSTRACT

The investigation of triggers causing the onset and intensification of Northern Hemisphere Glaciation (NHG) during the late Pliocene is essential for understanding the global climate system, with important implications for projecting future climate changes. Despite their critical roles in the global climate system, influences of land-ocean interactions on high-latitude ice sheets remain largely unexplored. Here, we present a high-resolution Asian dust record from Ocean Drilling Program Site 1208 in the North Pacific, which lies along the main route of the westerlies. Our data indicate that atmosphere-land-ocean interactions affected aeolian dust emissions through modulating moisture and vegetation in dust source regions, highlighting a critical role of terrestrial systems in initiating the NHG as early as 3.6 Myr ago. Combined with additional multi-proxy and model results, we further show that westerly wind strength was enhanced, mainly at low-to-middle tropospheric levels, during major glacial events at about 3.3 and 2.7 Myr ago. We suggest that coupled responses of Earth's surface dynamics and atmospheric circulation in the Plio-Pleistocene likely involved feedbacks related to changes in paleogeography, ocean circulation, and global climate.

17.
Neurooncol Adv ; 6(1): vdae119, 2024.
Article in English | MEDLINE | ID: mdl-39119277

ABSTRACT

Background: Primary central nervous system lymphoma (PCNSL) is a rare extranodal lymphomatous malignancy which is commonly treated with high-dose methotrexate (HD-MTX)-based chemotherapy. However, the prognosis outcome of HD-MTX-based treatment cannot be accurately predicted using the current prognostic scoring systems, such as the Memorial Sloan-Kettering Cancer Center (MSKCC) score. Methods: We studied 2 cohorts of patients with PCNSL and applied lipidomic analysis to their cerebrospinal fluid (CSF) samples. After removing the batch effects and features engineering, we applied and compared several classic machine-learning models based on lipidomic data of CSF to predict the relapse of PCNSL in patients who were treated with HD-MTX-based chemotherapy. Results: We managed to remove the batch effects and get the optimum features of each model. Finally, we found that Cox regression had the best prediction performance (AUC = 0.711) on prognosis outcomes. Conclusions: We developed a Cox regression model based on lipidomic data, which could effectively predict PCNSL patient prognosis before the HD-MTX-based chemotherapy treatments.

18.
ACS Appl Mater Interfaces ; 16(35): 46761-46770, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39177240

ABSTRACT

Outdoor thermal irritation poses a serious threat to public health, with the frequent occurrence of increasingly intense heat waves. With the global goal of carbon peaking and carbon neutrality, there is an urgent need for a strategy that is efficient and can provide localized outdoor cooling without an intensive energy input. This paper demonstrated a rapidly formable polyurethane-based coating with controlled bimodal spherical micropores. Nano-Al2O3 particles (300 nm) embedded in the polymer were used for targeted enhancement of reflectance at 0.38-0.5 wavelengths. The enhanced film reflected 93% solar irradiance and selectively transmitted 95% thermal radiation (8-13 µm), enabling rapid cooling and the creation of a comfortable thermal microclimate to avoid overheating of 6-11 °C during daytime conditions. The ultrawide material compatibility and excellent adaptive mechanical strength of polyurethane-based coatings are expected to benefit the sustainable development of society in a wide range of fields, from health to economics.

20.
Int J Biol Macromol ; : 134249, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39209589

ABSTRACT

Detection and monitoring of ammonia (NH3) are crucial in various industries, including plant safety management, food freshness testing, and water pollution control. Nevertheless, creating portable, low-cost, highly sensitive, and easily regenerated ppm-level NH3 sensors poses a significant challenge. In this investigation, an innovative "ant-like tentacle" fabrication strategy was proposed, and a colorimetric fluorescent dual-signal gas-sensitive cotton fabric (PAH-fabric) for NH3 detection was successfully prepared by conventional dyeing using suitable molecular-level photoacid (PAH) sensitive units. The visual recognition lower detection limit of the ultra-low is 1.09 ppm-level. PAH-fabric is not only straightforward, convenient, and cost-effective to prepare, but it can also be efficiently regenerated and recycled multiple times (maintaining excellent gas-sensitive performance even after 100 cycles) by strategically leveraging volatile acid fumigation. Detailed molecular reaction mechanisms involved in the NH3 response and PAH-fabric regeneration are elucidated. PAH-fabric, available either as a portable kit or an alarm system, offers a promising approach for ultra-low NH3 detection. The demonstrated "ant-like tentacle" fabrication strategy introduces numerous possibilities for designing and developing sensors with adjustable response thresholds, particularly those requiring high sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL