Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 739: 150568, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39178797

ABSTRACT

Doxorubicin (DOX), as a first-line anticancer drug, is widely used in the treatment of various cancers. However, its clinical application is restricted due to its severe cardiac toxicity. Previous studies have indicated exercise training can alleviate the DOX-induced cardiotoxicity (DIC), but the underlying mechanism remains unclear. Our research has discovered, post-exercise, an elevated expression level of mir-17-3p, but in DIC its level decreases. Therefore, we further studied the effect of exercise mir-17-3p axis on DIC. In vivo, we simulated DIC mouse model, followed by an intervention using swimming and adenovirus to inhibit mir-17-3p. We found that inhibition of mir-17-3p can weaken the protection of exercise against DIC, presenting as weakened heart function. Besides, the levels of Malondialdehyde and Fe2+ in the cardiac tissue increased, along with diminished glutathione peroxidase 4 and Solute Carrier Family 7 Member 11 levels, and a decline in the concentration of glutathione, causing an increase in ferroptosis. Moreover, in vitro, we used dual-luciferase assay to confirm that Kelch Like ECH Associated Protein 1 (KEAP1) can be a target gene of mir-17-3p. We used Keap1/NFE2 Like BZIP Transcription Factor 2 (NRF2) inhibitor brusatol and Stimulator of Interferon Response CGAMP Interactor 1 (STING) agonist SR-717 to verify the mir-17-3p/KEAP1 axis can affect the Cyclic GMP-AMP Synthase (CGAS)/STING pathway, leading to further ferroptosis in DIC. This manifested as a reduction in ferroptosis. In summary, our research suggests swimming training enhances the levels of mir-17-3p, thereby activating the KEAP1/NRF2 pathway, and weakening the CGAS/STING pathway, improving ferroptosis in DIC.

2.
BMC Public Health ; 24(1): 1460, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822299

ABSTRACT

BACKGROUND: The role of diet choline in atherosclerotic cardiovascular disease (ASCVD) is uncertain. Findings from animal experiments are contradictory while there is a lack of clinical investigations. This study aimed to investigate the association between choline intake and ASCVD based on individuals from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: This cross-sectional study was conducted in 5525 individuals from the NHANES between 2011 and 2018. Participants were categorized into the ASCVD (n = 5015) and non-ASCVD (n = 510) groups. Univariable and multivariable-adjusted regression analyses were employed to investigate the relationship between diet choline and pertinent covariates. Logistic regression analysis and restricted cubic spline analysis were used to evaluate the association between choline intake and ASCVD. RESULTS: ASCVD participants had higher choline intake compared to those without ASCVD. In the higher tertiles of choline intake, there was a greater proportion of males, married individuals, highly educated individuals, and those with increased physical activity, but a lower proportion of smokers and drinkers. In the higher tertiles of choline intake, a lower proportion of individuals had a history of congestive heart failure and stroke. After adjusting for age, gender, race, ethnicity, and physical activity, an inverse association between choline intake and heart disease, stroke, and ASCVD was found. A restricted cubic spline analysis showed a mirrored J-shaped relationship between choline and ASCVD, stroke and congestive heart failure in males. There was no association between dietary choline and metabolic syndrome. CONCLUSION: An inverse association was observed between choline intake and ASVCD among U.S. adults. Further large longitudinal studies are needed to test the causal relationship of choline and ASVCD.


Subject(s)
Atherosclerosis , Choline , Diet , Nutrition Surveys , Humans , Choline/administration & dosage , Male , Female , Cross-Sectional Studies , Middle Aged , United States/epidemiology , Atherosclerosis/epidemiology , Diet/statistics & numerical data , Adult , Aged , Cardiovascular Diseases/epidemiology
3.
Article in English | MEDLINE | ID: mdl-38687336

ABSTRACT

Aims: Diabetic heart damage can lead to cardiomyocyte death, which endangers human health. Baicalin (BAI) is a bioactive compound that plays an important role in cardiovascular diseases. Sentrin/SUMO-specific protease 1 (SENP1) regulates the de-small ubiquitin-like modifier (deSUMOylation) process of Sirtuin 3 (SIRT3) and plays a crucial role in regulating mitochondrial mass and preventing cell injury. Our hypothesis is that BAI regulates the deSUMOylation level of SIRT3 through SENP1 to enhance mitochondrial quality control and prevent cell death, ultimately improving diabetic cardiomyopathy (DCM). Results: The protein expression of SENP1 decreased in cardiomyocytes induced by high glucose and in db/db mice. The cardioprotective effects of BAI were eliminated by silencing endogenous SENP1, whereas overexpression of SENP1 showed similar cardioprotective effects to those of BAI. Furthermore, co-immunoprecipitation experiments showed that BAI's cardioprotective effect was due to the inhibition of the SUMOylation modification level of SIRT3 by SENP1. Inhibition of SENP1 expression resulted in an increase in SUMOylation of SIRT3. This led to increased acetylation of mitochondrial protein, accumulation of reactive oxygen species, impaired autophagy, impaired mitochondrial oxidative phosphorylation, and increased cell death. None of these changes could be reversed by BAI. Conclusion: BAI improves DCM by promoting SIRT3 deSUMOylation through SENP1, restoring mitochondrial stability, and preventing the cell death of cardiomyocytes. Innovation: This study proposes for the first time that SIRT3 SUMOylation modification is involved in the development of DCM and provides in vivo and in vitro data support that BAI inhibits cardiomyocyte ferroptosis and apoptosis in DCM through SENP1. [Figure: see text].

4.
Biochem Biophys Res Commun ; 700: 149582, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38306930

ABSTRACT

Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1ß and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.


Subject(s)
Cardiotoxicity , Inflammasomes , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Mice , Apoptosis , Cardiotoxicity/genetics , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Inflammasomes/genetics , Inflammasomes/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
5.
Am J Physiol Cell Physiol ; 326(3): C724-C741, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38223927

ABSTRACT

Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ferroptosis , Gastrointestinal Microbiome , Glucosides , Monoterpenes , Animals , Mice , Diabetic Cardiomyopathies/drug therapy , Myocardium
6.
Am J Physiol Cell Physiol ; 326(1): C161-C176, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38009195

ABSTRACT

The relationship between gut microbiota and doxorubicin-induced cardiotoxicity (DIC) is becoming increasingly clear. Emodin (EMO), a naturally occurring anthraquinone, exerts cardioprotective effects and plays a protective role by regulating gut microbiota composition. Therefore, the protective effect of EMO against DIC injury and its underlying mechanisms are worth investigating. In this study, we analyzed the differences in the gut microbiota in recipient mice transplanted with different flora using 16S-rDNA sequencing, analyzed the differences in serum metabolites among groups of mice using a nontargeted gas chromatography-mass spectrometry coupling system, and assessed cardiac function based on cardiac morphological staining, cardiac injury markers, and ferroptosis indicator assays. We found EMO ameliorated DIC and ferroptosis, as evidenced by decreased myocardial fibrosis, cardiomyocyte hypertrophy, and myocardial disorganization; improved ferroptosis indicators; and the maintenance of normal mitochondrial morphology. The protective effect of EMO was eliminated by the scavenging effect of antibiotics on the gut microbiota. Through fecal microbiota transplantation (FMT), we found that EMO restored the gut microbiota disrupted by doxorubicin (DOX) to near-normal levels. This was evidenced by an increased proportion of Bacteroidota and a decreased proportion of Verrucomicrobiota. FMT resulted in changes in the composition of serum metabolites. Mice transplanted with EMO-improved gut microbiota showed better cardiac function and ferroptosis indices; however, these beneficial effects were not observed in Nrf2 (Nfe2l2)-/- mice. Overall, EMO exerted a protective effect against DIC by attenuating ferroptosis, and the above effects occurred by remodeling the composition of gut microbiota perturbed by DOX and required Nrf2 mediation.NEW & NOTEWORTHY This study demonstrated for the first time the protective effect of emodin against DIC and verified by FMT that its cardioprotective effect was achieved by remodeling gut microbiota composition, resulting in attenuation of ferroptosis. Furthermore, we demonstrated that these effects were mediated by the redox-related gene Nrf2.


Subject(s)
Emodin , Ferroptosis , Gastrointestinal Microbiome , Animals , Mice , Emodin/pharmacology , Cardiotoxicity , NF-E2-Related Factor 2/genetics , Doxorubicin/toxicity , Myocytes, Cardiac
7.
Biomed Pharmacother ; 168: 115654, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806095

ABSTRACT

Doxorubicin (DOX) is a commonly used chemotherapy drug widely applied in various cancers such as breast cancer, leukemia, and sarcomas. However, its usage is limited by cardiotoxicity. Additionally, the cardiac toxicity of DOX accumulates with dose and duration, making it imperative to identify therapeutic targets for DOX-induced cardiomyopathy (DIC). It has been reported that miRNAs are involved in the progression of DIC. Mir-34a-5p has been identified as an early diagnostic marker for DIC. While studies have shown the involvement of mir-34a-5p in DIC apoptosis, it has not been validated in animal models, nor has the potential improvement of DIC by inhibiting mir-34a-5p been confirmed. Autophagy and pyroptosis are key factors in the development of DIC and can serve as therapeutic targets for its treatment. In this study, we found that mir-34a-5p was upregulated in the heart after DOX treatment and that the inhibition of mir-34-5p reduced autophagy and pyroptosis in DIC. We also found that the inhibition of mir-34a-5p inhibited pyroptosis by regulating autophagy and reducing mitochondrial reactive oxygen species. Moreover, we identified Sirtuin3 (Sirt3) as a target gene of mir-34a-5p using a double-luciferase reporter assay. overexpression Sirt3 reduced pyroptosis by alleviating autophagy. Our research findings suggest that inhibiting mir-34a-5p has a beneficial role in alleviating autophagy and pyroptosis in DIC. This provides therapeutic prospects for treating DIC.


Subject(s)
MicroRNAs , Sirtuin 3 , Animals , AMP-Activated Protein Kinases , Autophagy/genetics , Cardiotoxicity , Doxorubicin/adverse effects , Doxorubicin/pharmacology , MicroRNAs/metabolism , Pyroptosis , Sirtuin 3/genetics
8.
Article in English | MEDLINE | ID: mdl-37756370

ABSTRACT

Aims: The relationship between the gut microbiota and cardiovascular system has been increasingly clarified. Fecal microbiota transplantation (FMT), used to improve gut microbiota, has been applied clinically for disease treatment and has great potential in combating doxorubicin (DOX)-induced cardiotoxicity. However, the application of FMT in the cardiovascular field and its molecular mechanisms are poorly understood. Results: During DOX-induced stress, FMT alters the gut microbiota and serum metabolites, leading to a reduction in cardiac injury. Correlation analysis indicated a close association between serum metabolite indole-3-propionic acid (IPA) and cardiac function. FMT and IPA achieve this by facilitating the translocation of Nfe2l2 (Nrf2) from the cytoplasm to the nucleus, thereby activating the expression of antioxidant molecules, reducing reactive oxygen species production, and inhibiting excessive mitochondrial fission. Consequently, mitochondrial function is preserved, leading to the mitigation of cardiac injury under DOX-induced stress. Innovation: FMT has the ability to modify the composition of the gut microbiota, providing not only protection to the intestinal mucosa but also influencing the generation of serum metabolites and regulating the Nrf2 gene to modulate the balance of cardiac mitochondrial fission and fusion. This study comprehensively demonstrates the efficacy of FMT in countering DOX-induced myocardial damage and elucidates the pathways linking the microbiota and the heart. Conclusion: FMT alters the gut microbiota and serum metabolites of recipient mice, promoting nuclear translocation of Nrf2 and subsequent activation of downstream antioxidant molecule expression, while inhibiting excessive mitochondrial fission to preserve cardiac integrity. Correlation analysis highlights IPA as a key contributor among differentially regulated metabolites.

9.
Sci Rep ; 13(1): 1279, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690700

ABSTRACT

Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.


Subject(s)
Cardiotoxicity , Heart Failure , Rats , Animals , Myocytes, Cardiac , Doxorubicin/pharmacology , Heart Failure/chemically induced , Apoptosis , Mammals
10.
Front Cardiovasc Med ; 9: 931066, 2022.
Article in English | MEDLINE | ID: mdl-36465455

ABSTRACT

Purpose: Diabetic heart failure (DHF) or cardiomyopathy is a common complication of diabetes; however, the underlying mechanism is not clear. In the present study, the authors searched for differentially expressed genes associated with DHF and the molecular types of immune cells based on bioinformatics. Methods: The RNA expression dataset of DHF was obtained from the NCBI Gene Expression Omnibus (GEO) database. After preprocessing the data, the differentially expressed genes (DEGs) between the DHF group and the non-diabetic heart failure (NHF) group were screened and intersected with immune-related genes (IRGs) in the ImmPort database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the DAVID tool. The ssGSEA algorithm was used to evaluate immune infiltration of the heart tissue in each group. In addition, the protein-protein interaction (PPI) network and miRNA-mRNA network were constructed using the STRING online website and Cytoscape program. Finally, validation analysis was performed using animal models. Results: Eight immune-related core genes were identified. GO and KEGG showed that core genes were mainly enriched in angiogenesis and cytokine-cytokine receptor interaction. Immune infiltration results showed that activated dendritic cells, central memory CD4 T cells, central memory CD8 T cells, myeloid-derived suppressor cells (MDSCs), neutrophils, and regulatory T cells may be involved in DHF. Neutrophils may play a key role in the pathogenesis of HF in diabetes. Conclusion: Immune-related core genes and immune infiltrating cells provide a new perspective on the pathogenesis of DHF.

11.
Front Public Health ; 10: 947204, 2022.
Article in English | MEDLINE | ID: mdl-36148336

ABSTRACT

Background: In recent years, the prevalence of type 2 diabetes mellitus (T2DM) has increased annually. The major complication of T2DM is cardiovascular disease (CVD). CVD is the main cause of death in T2DM patients, particularly those with comorbid acute coronary syndrome (ACS). Although risk prediction models using multivariate logistic regression are available to assess the probability of new-onset ACS development in T2DM patients, none have been established using machine learning (ML). Methods: Between January 2019 and January 2020, we enrolled 521 T2DM patients with new-onset ACS or no ACS from our institution's medical information recording system and divided them into a training dataset and a testing dataset. Seven ML algorithms were used to establish models to assess the probability of ACS coupled with 5-cross validation. Results: We established a nomogram to assess the probability of newly diagnosed ACS in T2DM patients with an area under the curve (AUC) of 0.80 in the testing dataset and identified some key features: family history of CVD, history of smoking and drinking, aspartate aminotransferase level, age, neutrophil count, and Killip grade, which accelerated the development of ACS in patients with T2DM. The AUC values of the seven ML models were 0.70-0.96, and random forest model had the best performance (accuracy, 0.89; AUC, 0.96; recall, 0.83; precision, 0.91; F1 score, 0.87). Conclusion: ML algorithms, especially random forest model (AUC, 0.961), had higher performance than conventional logistic regression (AUC, 0.801) for assessing new-onset ACS probability in T2DM patients with excellent clinical and diagnostic value.


Subject(s)
Acute Coronary Syndrome , Diabetes Mellitus, Type 2 , Acute Coronary Syndrome/complications , Acute Coronary Syndrome/diagnosis , Algorithms , Aspartate Aminotransferases , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Humans , Machine Learning , Retrospective Studies
12.
Alcohol ; 96: 55-61, 2021 11.
Article in English | MEDLINE | ID: mdl-33549609

ABSTRACT

BACKGROUND: Alcohol abuse has become a serious health issue worldwide. Ketamine can reduce addiction risk among patients with alcohol use disorders. This study aimed to determine the effects of alcohol on the pharmacokinetics of ketamine during long-term alcohol exposure. METHOD: An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of ketamine and norketamine was developed and validated. A total of 15 rats were given 40% alcohol for 3 weeks. The pharmacokinetics of ketamine were measured at time zero, 1 week, 2 weeks, and 3 weeks after alcohol exposure. The metabolic capability of liver CYP450 was evaluated using three probe drugs: metoprolol, phenacetin, and tolbutamide. RESULTS: During drinking of 40% alcohol, the AUC(0-t), AUC(0-∞), and Cmax of ketamine and norketamine significantly increased, while V and CL significantly decreased with time (p < 0.001). The pharmacokinetic changes of norketamine were highly consistent with ketamine. Additionally, the concentration ratio of norketamine/ketamine in sample time also decreased over time. However, there were no pharmacokinetic changes of three probe drugs, which indicated there was no significant change of liver CYPs activities. CONCLUSION: Alcohol significantly increases plasma concentration of ketamine and norketamine. The effect of alcohol on pharmacokinetics of ketamine should be considered in clinical therapy.


Subject(s)
Alcoholism , Ketamine , Animals , Chromatography, Liquid , Humans , Ketamine/analogs & derivatives , Rats , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL