ABSTRACT
PURPOSE: To explore the role of all-trans retinoic acid (ATRA) in renal ischemia/reperfusion injury of diabetic rats. METHODS: Sixty adult male rats were randomly divided into 6 groups, including sham group (S group), ischemia-reperfusion group (I/R group), ischemia-reperfusion+ATRA group (A group), diabetic group (D group), diabetic ischemia-reperfusion group (DI/R group), diabetic ischemia-reperfusion +ATRA group (DA group). The levels of creatinine (Cr), cystatin C (Cys-C) and ß2-microglobulin (ß2-MG) were measured. Morphology of renal tissue was observed under light microscope. RESULTS: DJ-1, Nrf2, HO-1 and caspase-3 were detected by western blot. DJ-1, Nrf2, HO-1 and caspase-3 in I/R group, D group and DI/R group was higher than that in S group. Compared with I/R group, Nrf2 and HO-1 in A group was decreased, but caspase-3 was increased. However, Nrf2 in DA group was higher than that in DI/R group, HO-1 and caspase-3 in DA group were lower than that in DI/R group. Compared with group S, Cr, Cys-C and ß2-MG in I/R group, A group, D group, and DI/R group were higher. Whereas the levels of Cr, Cys-C, ß2-MG and renal injury score in DA group were lower than those in DI/R group. CONCLUSION: ATRA has a protective effect on renal ischemia-reperfusion injury in diabetic rats, maybe relating to DJ/Nrf2 pathway.
Subject(s)
Diabetes Mellitus, Experimental/chemically induced , Kidney/drug effects , NF-E2-Related Factor 2/therapeutic use , Reperfusion Injury/prevention & control , Tretinoin/therapeutic use , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Kidney/pathology , Male , NF-E2-Related Factor 2/pharmacology , Rats , Reperfusion Injury/pathology , Streptozocin , Tretinoin/pharmacologyABSTRACT
Purpose To explore the role of all-trans retinoic acid (ATRA) in renal ischemia/reperfusion injury of diabetic rats. Methods Sixty adult male rats were randomly divided into 6 groups, including sham group (S group), ischemia-reperfusion group (I/R group), ischemia-reperfusion+ATRA group (A group), diabetic group (D group), diabetic ischemia-reperfusion group (DI/R group), diabetic ischemia-reperfusion +ATRA group (DA group). The levels of creatinine (Cr), cystatin C (Cys-C) and β2-microglobulin (β2-MG) were measured. Morphology of renal tissue was observed under light microscope. Results DJ-1, Nrf2, HO-1 and caspase-3 were detected by western blot. DJ-1, Nrf2, HO-1 and caspase-3 in I/R group, D group and DI/R group was higher than that in S group. Compared with I/R group, Nrf2 and HO-1 in A group was decreased, but caspase-3 was increased. However, Nrf2 in DA group was higher than that in DI/R group, HO-1 and caspase-3 in DA group were lower than that in DI/R group. Compared with group S, Cr, Cys-C and β2-MG in I/R group, A group, D group, and DI/R group were higher. Whereas the levels of Cr, Cys-C, β2-MG and renal injury score in DA group were lower than those in DI/R group. Conclusion ATRA has a protective effect on renal ischemia-reperfusion injury in diabetic rats, maybe relating to DJ/Nrf2 pathway.(AU)
Subject(s)
Animals , Male , Rats , Mice, Inbred NOD , Tretinoin/analysis , Tretinoin/therapeutic use , Reperfusion Injury/drug therapy , Diabetes MellitusABSTRACT
PURPOSE: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. METHODS: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11 pretreatment. Cardiac function, myocardial infarct size, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) 15-F2tisoprostane, autophagosome, LC3II/I ratio and Belcin-1 level were determined to reflect myocardial injury, oxidative stress and autophagy, respectively. In in vitro study, H9c2 cells cultured in high glucose (HG, 30mM) suffered hypoxia reoxygenation (HR) with/without GDF11, hydrogen peroxide (H2O2) and autophagy inhibitor 3-methyladenine (3-MA) treatment, cell injury; oxidative stress and autophagy were assessed. RESULTS: Pretreatment with GDF11 significantly improved cardiac morphology and function in diabetes, concomitant with decreased arrhythmia severity, infarct size, CK-MB, LDH and 15-F2tisoprostane release, increased SOD activity and autophagy level. In addition, GDF11 notably reduced HR injury in H9c2 cells with HG exposure, accompanied by oxidative stress reduction and autophagy up-regulation. However, those effects were completely reversed by H2O2 and 3-MA. CONCLUSION: GDF11 can provide protection against MIR injury in diabetic rats, and is implicated in antioxidant stress and autophagy up-regulation.
Subject(s)
Autophagy/drug effects , Diabetes Mellitus, Type 1/metabolism , Growth Differentiation Factors/pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Blotting, Western , Cardiotonic Agents/pharmacology , Cell Line , Diabetes Mellitus, Experimental/metabolism , Hemodynamics/drug effects , Male , Microscopy, Electron, Transmission , Myocardial Reperfusion Injury/pathology , Rats, Sprague-Dawley , Reference Values , Reproducibility of Results , Streptozocin , Superoxide Dismutase/analysis , Up-Regulation/drug effectsABSTRACT
Abstract Purpose To explore the role of all-trans retinoic acid (ATRA) in renal ischemia/reperfusion injury of diabetic rats. Methods Sixty adult male rats were randomly divided into 6 groups, including sham group (S group), ischemia-reperfusion group (I/R group), ischemia-reperfusion+ATRA group (A group), diabetic group (D group), diabetic ischemia-reperfusion group (DI/R group), diabetic ischemia-reperfusion +ATRA group (DA group). The levels of creatinine (Cr), cystatin C (Cys-C) and β2-microglobulin (β2-MG) were measured. Morphology of renal tissue was observed under light microscope. Results DJ-1, Nrf2, HO-1 and caspase-3 were detected by western blot. DJ-1, Nrf2, HO-1 and caspase-3 in I/R group, D group and DI/R group was higher than that in S group. Compared with I/R group, Nrf2 and HO-1 in A group was decreased, but caspase-3 was increased. However, Nrf2 in DA group was higher than that in DI/R group, HO-1 and caspase-3 in DA group were lower than that in DI/R group. Compared with group S, Cr, Cys-C and β2-MG in I/R group, A group, D group, and DI/R group were higher. Whereas the levels of Cr, Cys-C, β2-MG and renal injury score in DA group were lower than those in DI/R group. Conclusion ATRA has a protective effect on renal ischemia-reperfusion injury in diabetic rats, maybe relating to DJ/Nrf2 pathway.
Subject(s)
Animals , Male , Rats , Tretinoin/therapeutic use , Reperfusion Injury/prevention & control , Diabetes Mellitus, Experimental/chemically induced , NF-E2-Related Factor 2/therapeutic use , Kidney/drug effects , Tretinoin/pharmacology , Reperfusion Injury/pathology , Streptozocin , Disease Models, Animal , Drug Evaluation, Preclinical , NF-E2-Related Factor 2/pharmacology , Kidney/pathologyABSTRACT
PURPOSE: To evaluate the effects of Dexmedetomidine (Dex) on spinal pathology and inflammatory factor in a rat model of Diabetic neuropathic pain (DNP). METHODS: The rats were divided into 3 groups (eight in each group): normal group (N group), diabetic neuropathic pain model group (DNP group), and DNP model with dexmedetomidine (Dex group). The rat model of diabetes was established with intraperitoneal streptozotocin (STZ) injections. Nerve cell ultrastructure was evaluated with transmission electron microscopy (TEM). The mechanical withdrawal threshold (MWT) and motor nerve conduction velocity (MNCV) tests documented that DNP rat model was characterized by a decreased pain threshold and nerve conduction velocity. RESULTS: Dex restored the phenotype of neurocytes, reduced the extent of demyelination and improved MWT and MNCV of DNP-treated rats (P=0.01, P=0.038, respectively). The expression of three pain-and inflammation-associated factors (P2X4, NLRP3, and IL-IP) was significantly upregulated at the protein level in DNP rats, and this change was reversed by Dex administration (P=0.0022, P=0.0092, P=0.0028, respectively). CONCLUSION: The P2X4/NLRP3 signaling pathway is implicated in the development and presence of DNP in vivo, and Dex protects from this disorder.
Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Dexmedetomidine/pharmacology , Diabetic Neuropathies/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Receptors, Purinergic P2X4/analysis , Spine/drug effects , Animals , Blotting, Western , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/pathology , Disease Models, Animal , Interleukin-1beta/analysis , Interleukin-1beta/drug effects , Male , Microscopy, Electron, Transmission , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Neural Conduction/drug effects , Pain Threshold , Random Allocation , Rats, Sprague-Dawley , Receptors, Purinergic P2X4/drug effects , Reproducibility of Results , Signal Transduction/drug effects , Spine/pathology , Streptozocin , Sural Nerve/drug effects , Sural Nerve/pathology , Time FactorsABSTRACT
Abstract Purpose: To evaluate the effects of Dexmedetomidine (Dex) on spinal pathology and inflammatory factor in a rat model of Diabetic neuropathic pain (DNP). Methods: The rats were divided into 3 groups (eight in each group): normal group (N group), diabetic neuropathic pain model group (DNP group), and DNP model with dexmedetomidine (Dex group). The rat model of diabetes was established with intraperitoneal streptozotocin (STZ) injections. Nerve cell ultrastructure was evaluated with transmission electron microscopy (TEM). The mechanical withdrawal threshold (MWT) and motor nerve conduction velocity (MNCV) tests documented that DNP rat model was characterized by a decreased pain threshold and nerve conduction velocity. Results: Dex restored the phenotype of neurocytes, reduced the extent of demyelination and improved MWT and MNCV of DNP-treated rats (P=0.01, P=0.038, respectively). The expression of three pain-and inflammation-associated factors (P2X4, NLRP3, and IL-IP) was significantly upregulated at the protein level in DNP rats, and this change was reversed by Dex administration (P=0.0022, P=0.0092, P=0.0028, respectively). Conclusion: The P2X4/NLRP3 signaling pathway is implicated in the development and presence of DNP in vivo, and Dex protects from this disorder.
Subject(s)
Animals , Male , Spine/drug effects , Dexmedetomidine/pharmacology , Diabetic Neuropathies/drug therapy , Receptors, Purinergic P2X4/analysis , Adrenergic alpha-2 Receptor Agonists/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Sural Nerve/drug effects , Time Factors , Random Allocation , Blotting, Western , Pain Threshold , Microscopy, Electron, Transmission , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/pathology , Disease Models, Animal , Interleukin-1beta/analysis , Interleukin-1beta/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Neural Conduction/drug effectsABSTRACT
Abstract Purpose: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. Methods: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11 pretreatment. Cardiac function, myocardial infarct size, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) 15-F2tisoprostane, autophagosome, LC3II/I ratio and Belcin-1 level were determined to reflect myocardial injury, oxidative stress and autophagy, respectively. In in vitro study, H9c2 cells cultured in high glucose (HG, 30mM) suffered hypoxia reoxygenation (HR) with/without GDF11, hydrogen peroxide (H2O2) and autophagy inhibitor 3-methyladenine (3-MA) treatment, cell injury; oxidative stress and autophagy were assessed. Results: Pretreatment with GDF11 significantly improved cardiac morphology and function in diabetes, concomitant with decreased arrhythmia severity, infarct size, CK-MB, LDH and 15-F2tisoprostane release, increased SOD activity and autophagy level. In addition, GDF11 notably reduced HR injury in H9c2 cells with HG exposure, accompanied by oxidative stress reduction and autophagy up-regulation. However, those effects were completely reversed by H2O2 and 3-MA. Conclusion: GDF11 can provide protection against MIR injury in diabetic rats, and is implicated in antioxidant stress and autophagy up-regulation.
Subject(s)
Animals , Male , Autophagy/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Oxidative Stress/drug effects , Diabetes Mellitus, Type 1/metabolism , Growth Differentiation Factors/pharmacology , Reference Values , Superoxide Dismutase/analysis , Cardiotonic Agents/pharmacology , Myocardial Reperfusion Injury/pathology , Up-Regulation/drug effects , Cell Line , Blotting, Western , Reproducibility of Results , Rats, Sprague-Dawley , Streptozocin , Microscopy, Electron, Transmission , Diabetes Mellitus, Experimental/metabolism , Hemodynamics/drug effects , Antioxidants/pharmacologyABSTRACT
Purpose: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. Methods: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11 pretreatment. Cardiac function, myocardial infarct size, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) 15-F2tisoprostane, autophagosome, LC3II/I ratio and Belcin-1 level were determined to reflect myocardial injury, oxidative stress and autophagy, respectively. In in vitro study, H9c2 cells cultured in high glucose (HG, 30mM) suffered hypoxia reoxygenation (HR) with/without GDF11, hydrogen peroxide (H2O2) and autophagy inhibitor 3-methyladenine (3-MA) treatment, cell injury; oxidative stress and autophagy were assessed. Results: Pretreatment with GDF11 significantly improved cardiac morphology and function in diabetes, concomitant with decreased arrhythmia severity, infarct size, CK-MB, LDH and 15-F2tisoprostane release, increased SOD activity and autophagy level. In addition, GDF11 notably reduced HR injury in H9c2 cells with HG exposure, accompanied by oxidative stress reduction and autophagy up-regulation. However, those effects were completely reversed by H2O2 and 3-MA. Conclusion: GDF11 can provide protection against MIR injury in diabetic rats, and is implicated in antioxidant stress and autophagy up-regulation.(AU)
Subject(s)
Animals , Rats , Rats/abnormalities , Rats/injuries , Myocardial Reperfusion/methods , Myocardial Reperfusion/veterinary , Reperfusion Injury/veterinaryABSTRACT
Purpose: To evaluate the effects of Dexmedetomidine (Dex) on spinal pathology and inflammatory factor in a rat model of Diabetic neuropathic pain (DNP). Methods: The rats were divided into 3 groups (eight in each group): normal group (N group), diabetic neuropathic pain model group (DNP group), and DNP model with dexmedetomidine (Dex group). The rat model of diabetes was established with intraperitoneal streptozotocin (STZ) injections. Nerve cell ultrastructure was evaluated with transmission electron microscopy (TEM). The mechanical withdrawal threshold (MWT) and motor nerve conduction velocity (MNCV) tests documented that DNP rat model was characterized by a decreased pain threshold and nerve conduction velocity. Results: Dex restored the phenotype of neurocytes, reduced the extent of demyelination and improved MWT and MNCV of DNP-treated rats (P=0.01, P=0.038, respectively). The expression of three pain-and inflammation-associated factors (P2X4, NLRP3, and IL-IP) was significantly upregulated at the protein level in DNP rats, and this change was reversed by Dex administration (P=0.0022, P=0.0092, P=0.0028, respectively). Conclusion: The P2X4/NLRP3 signaling pathway is implicated in the development and presence of DNP in vivo, and Dex protects from this disorder.(AU)
Subject(s)
Animals , Dexmedetomidine/analysis , Dexmedetomidine/pharmacokinetics , Rats/injuries , Diabetic Neuropathies/veterinary , PainABSTRACT
PURPOSE:: To determine whether dexmedetomidine (DEX) could attenuate acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) in streptozotocin (STZ)-induced diabetic rats. METHODS:: Four groups each containing six rats were created (sham control(S), diabetes-sham (DS), diabetes I/R (DI/R), and diabetes-I/R-dexmedetomidine (DI/R-DEX). In diabetes groups, single-dose (65 mg/kg) STZ was administered intraperitoneally (i.p.). In Group DI/R, ischemia reperfusion was produced via 25 min of bilateral renal pedicle clamping followed by 48 h of reperfusion. In Group DI/R-DEX, 50 µg/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia. Renal function, histology, apoptosis, the levels of TNF-α, IL-1ß, and oxidative stress in diabetic kidney were determined. Moreover, expression of P38 mitogen-activated protein kinase (P38-MAPK), phosphorylated-P38-MAPK(p-P38-MAPK) and thioredoxin-interacting protein (TXNIP) were assessed. RESULTS:: The degree of renal I/R injury was significantly increased in DI/R group compared with S group and DS group. The levels of TNF-α, IL-1ß, oxidative stress and apoptosis were found significantly higher in DI/R Group when compared with S Group and DS Group. The protein expression of p-P38-MAPK and TXNIP were significantly increased after I/R. All these changes were reversed by DEX treatment. CONCLUSION:: The renoprotective effects of DEX-pretreatment which attenuates I/R-induced AKI were partly through inhibition of P38-MAPK activation and expression of TXINP in diabetic kidney.
Subject(s)
Dexmedetomidine/therapeutic use , Diabetes Mellitus, Experimental/complications , Kidney/drug effects , Protective Agents/therapeutic use , Reperfusion Injury/drug therapy , Animals , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Kidney/injuries , Kidney/pathology , Male , Rats , Rats, Sprague-Dawley , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Streptozocin , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
Purpose: To determine whether dexmedetomidine (DEX) could attenuate acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) in streptozotocin (STZ)-induced diabetic rats. Methods: Four groups each containing six rats were created (sham control(S), diabetes-sham (DS), diabetes I/R (DI/R), and diabetes-I/R-dexmedetomidine (DI/R-DEX). In diabetes groups, single-dose (65 mg/kg) STZ was administered intraperitoneally (i.p.). In Group DI/R, ischemia reperfusion was produced via 25 min of bilateral renal pedicle clamping followed by 48 h of reperfusion. In Group DI/R-DEX, 50 g/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia. Renal function, histology, apoptosis, the levels of TNF-, IL-1, and oxidative stress in diabetic kidney were determined. Moreover, expression of P38 mitogen-activated protein kinase (P38-MAPK), phosphorylated-P38-MAPK(p-P38-MAPK) and thioredoxin-interacting protein (TXNIP) were assessed. Results: The degree of renal I/R injury was significantly increased in DI/R group compared with S group and DS group. The levels of TNF-, IL-1, oxidative stress and apoptosis were found significantly higher in DI/R Group when compared with S Group and DS Group. The protein expression of p-P38-MAPK and TXNIP were significantly increased after I/R. All these changes were reversed by DEX treatment. Conclusion: The renoprotective effects of DEX-pretreatment which attenuates I/R-induced AKI were partly through inhibition of P38-MAPK activation and expression of TXINP in diabetic kidney.(AU)
Subject(s)
Animals , Rats , Dexmedetomidine/administration & dosage , Ischemia/veterinary , Rats/abnormalities , Rats/injuries , Diabetes Mellitus , ReperfusionABSTRACT
Abstract Purpose: To determine whether dexmedetomidine (DEX) could attenuate acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) in streptozotocin (STZ)-induced diabetic rats. Methods: Four groups each containing six rats were created (sham control(S), diabetes-sham (DS), diabetes I/R (DI/R), and diabetes-I/R-dexmedetomidine (DI/R-DEX). In diabetes groups, single-dose (65 mg/kg) STZ was administered intraperitoneally (i.p.). In Group DI/R, ischemia reperfusion was produced via 25 min of bilateral renal pedicle clamping followed by 48 h of reperfusion. In Group DI/R-DEX, 50 μg/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia. Renal function, histology, apoptosis, the levels of TNF-α, IL-1β, and oxidative stress in diabetic kidney were determined. Moreover, expression of P38 mitogen-activated protein kinase (P38-MAPK), phosphorylated-P38-MAPK(p-P38-MAPK) and thioredoxin-interacting protein (TXNIP) were assessed. Results: The degree of renal I/R injury was significantly increased in DI/R group compared with S group and DS group. The levels of TNF-α, IL-1β, oxidative stress and apoptosis were found significantly higher in DI/R Group when compared with S Group and DS Group. The protein expression of p-P38-MAPK and TXNIP were significantly increased after I/R. All these changes were reversed by DEX treatment. Conclusion: The renoprotective effects of DEX-pretreatment which attenuates I/R-induced AKI were partly through inhibition of P38-MAPK activation and expression of TXINP in diabetic kidney.
Subject(s)
Animals , Male , Rats , Reperfusion Injury/drug therapy , Protective Agents/therapeutic use , Dexmedetomidine/therapeutic use , Diabetes Mellitus, Experimental/complications , Kidney/drug effects , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Rats, Sprague-Dawley , Streptozocin , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Kidney/injuries , Kidney/pathologyABSTRACT
PURPOSE: To determine whether Toll-like receptor 7 (TLR7) is the potential targets of prevention or progression in the renal ischemia/reperfusion (I/R) injury of STZ-induced diabetic rats. METHODS: Thirty six Sprague-Dawley rats were randomly arranged to the nondiabetic (ND) or diabetic group (DM), with each group further divided into sham (no I/R injury), I/R (ischemia-reperfusion) and CD (given by Chloroquine) group. Preoperatively, Chloroquine (40 mg/kg, intraperitoneal injection.) was administrated 6 days for treatment group. I/R animals were subjected to 25 min of bilateral renal ischemia. Renal function, histology, apoptosis, cytokines, expression of TLR7, MyD88 and NF-κB were detected. RESULTS: The serum levels of blood urea nitrogen, creatinine, IL-6 and TNF-α, apoptotic tubular epithelial cells, expression of TLR7, MyD88 and NF-κB were significantly increased in DM+I/R group, compared with ND+I/R group (p<0.05). All these changes were further improved by TLR7 inhibition Chloroquine except Paller scores (p<0.05). CONCLUSION: Toll-like receptor 7 inhibition attenuates the acute renal ischemia/reperfusion injury of STZ-induced diabetic in SD rats.
Subject(s)
Acute Kidney Injury/metabolism , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Reperfusion Injury/metabolism , Toll-Like Receptor 7/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , In Situ Nick-End Labeling/methods , Kidney/pathology , Male , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury/complications , Toll-Like Receptor 7/bloodABSTRACT
PURPOSE:To determine whether Toll-like receptor 7 (TLR7) is the potential targets of prevention or progression in the renal ischemia/reperfusion (I/R) injury of STZ-induced diabetic rats.METHODS:Thirty six Sprague-Dawley rats were randomly arranged to the nondiabetic (ND) or diabetic group (DM), with each group further divided into sham (no I/R injury), I/R (ischemia-reperfusion) and CD (given by Chloroquine) group. Preoperatively, Chloroquine (40 mg/kg, intraperitoneal injection.) was administrated 6 days for treatment group. I/R animals were subjected to 25 min of bilateral renal ischemia. Renal function, histology, apoptosis, cytokines, expression of TLR7, MyD88 and NF-κB were detected.RESULTS:The serum levels of blood urea nitrogen, creatinine, IL-6 and TNF-α, apoptotic tubular epithelial cells, expression of TLR7, MyD88 and NF-κB were significantly increased in DM+I/R group, compared with ND+I/R group (p<0.05). All these changes were further improved by TLR7 inhibition Chloroquine except Paller scores (p<0.05).CONCLUSION:Toll-like receptor 7 inhibition attenuates the acute renal ischemia/reperfusion injury of STZ-induced diabetic in SD rats.(AU)
Subject(s)
Animals , Rats , Toll-Like Receptor 7 , Reperfusion Injury/veterinary , Acute Kidney Injury/veterinary , Mice, Inbred NOD , Diabetes Mellitus, Experimental , Rats, Sprague-DawleyABSTRACT
ABSTRACT PURPOSE: To determine whether Toll-like receptor 7 (TLR7) is the potential targets of prevention or progression in the renal ischemia/reperfusion (I/R) injury of STZ-induced diabetic rats. METHODS: Thirty six Sprague-Dawley rats were randomly arranged to the nondiabetic (ND) or diabetic group (DM), with each group further divided into sham (no I/R injury), I/R (ischemia-reperfusion) and CD (given by Chloroquine) group. Preoperatively, Chloroquine (40 mg/kg, intraperitoneal injection.) was administrated 6 days for treatment group. I/R animals were subjected to 25 min of bilateral renal ischemia. Renal function, histology, apoptosis, cytokines, expression of TLR7, MyD88 and NF-κB were detected. RESULTS: The serum levels of blood urea nitrogen, creatinine, IL-6 and TNF-α, apoptotic tubular epithelial cells, expression of TLR7, MyD88 and NF-κB were significantly increased in DM+I/R group, compared with ND+I/R group (p<0.05). All these changes were further improved by TLR7 inhibition Chloroquine except Paller scores (p<0.05). CONCLUSION: Toll-like receptor 7 inhibition attenuates the acute renal ischemia/reperfusion injury of STZ-induced diabetic in SD rats.