Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinformatics ; 40(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950180

ABSTRACT

MOTIVATION: The rise of single-cell RNA sequencing (scRNA-seq) technology presents new opportunities for constructing detailed cell type-specific gene regulatory networks (GRNs) to study cell heterogeneity. However, challenges caused by noises, technical errors, and dropout phenomena in scRNA-seq data pose significant obstacles to GRN inference, making the design of accurate GRN inference algorithms still essential. The recent growth of both single-cell and spatial transcriptomic sequencing data enables the development of supervised deep learning methods to infer GRNs on these diverse single-cell datasets. RESULTS: In this study, we introduce a novel deep learning framework based on shared factor neighborhood and integrated neural network (SFINN) for inferring potential interactions and causalities between transcription factors and target genes from single-cell and spatial transcriptomic data. SFINN utilizes shared factor neighborhood to construct cellular neighborhood network based on gene expression data and additionally integrates cellular network generated from spatial location information. Subsequently, the cell adjacency matrix and gene pair expression are fed into an integrated neural network framework consisting of a graph convolutional neural network and a fully-connected neural network to determine whether the genes interact. Performance evaluation in the tasks of gene interaction and causality prediction against the existing GRN reconstruction algorithms demonstrates the usability and competitiveness of SFINN across different kinds of data. SFINN can be applied to infer GRNs from conventional single-cell sequencing data and spatial transcriptomic data. AVAILABILITY AND IMPLEMENTATION: SFINN can be accessed at GitHub: https://github.com/JGuan-lab/SFINN.


Subject(s)
Algorithms , Gene Regulatory Networks , Neural Networks, Computer , Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Transcriptome/genetics , Humans , Gene Expression Profiling/methods , Transcription Factors/metabolism , Transcription Factors/genetics , Computational Biology/methods , Deep Learning , Sequence Analysis, RNA/methods
2.
Molecules ; 28(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687022

ABSTRACT

Natural products play a key role in innovative drug discovery. To explore the potential application of natural products and their analogues in pharmacology, total synthesis is a key tool that provides natural product candidates and synthetic analogues for drug development and potential clinical trials. Deconstructive synthesis, namely building new, challenging structures through bond cleavage of easily accessible moieties, has emerged as a useful design principle in synthesizing bioactive natural products. Divergent synthesis, namely synthesizing many natural products from a common intermediate, can improve the efficiency of chemical synthesis and generate libraries of molecules with unprecedented structural diversity. In this review, we will firstly introduce five recent and excellent examples of deconstructive and divergent syntheses of natural products (2021-2023). Then, we will summarize our previous work on the deconstructive and divergent synthesis of natural products to demonstrate the high efficiency and simplicity of these two strategies in the field of total synthesis.


Subject(s)
Biological Products , Drug Development , Drug Discovery
3.
J Am Chem Soc ; 145(39): 21170-21175, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37605370

ABSTRACT

The first total syntheses of polycyclic diterpenes phomopsene (1), methyl phomopsenonate (2), and iso-phomopsene (3) have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules 1-3. This work enables us to determine that the correct structure of iso-phomopsene is, in fact, the C7 epimer of the originally assigned structure. Finally, the absolute configurations of three target molecules were confirmed through enantioselective synthesis.

4.
Chem Sci ; 12(45): 15061-15066, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34909146

ABSTRACT

Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds.

SELECTION OF CITATIONS
SEARCH DETAIL