Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 580
Filter
1.
Discov Oncol ; 15(1): 425, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256239

ABSTRACT

Short-chain fatty acids (SCFAs) are produced by bacterial fermentation in the colon and are thought to be protective against gastrointestinal disease. SCFAs such as acetate, propionate and butyrate are important metabolites in the maintenance of intestinal homeostasis and have been shown to be beneficial in colorectal cancer (CRC). SCFAs are responsible for maintaining a normal intestinal barrier and exhibit numerous immunomodulatory functions. In this review article, we will discuss the metabolism and mechanism of action of SCFAs and their effects on the CRC, with particular emphasis on dietary fiber treatment and the clinical research progress.

2.
Front Microbiol ; 15: 1452499, 2024.
Article in English | MEDLINE | ID: mdl-39252836

ABSTRACT

During an investigation of fungal diversity from freshwater environments in different regions in Jiangxi Province, China, four interesting species were collected. Morphology coupled with combined gene analysis of an ITS, LSU, SSU, and rpb2 DNA sequence data showed that they belong to the family Pleurotheciaceae. Four new species, Pleurotheciella ganzhouensis, Pla. irregularis, Pla. verrucosa, and Pleurothecium jiangxiense are herein described. Pleurotheciella ganzhouensis is characterized by its capsule-shaped conidia and short conidiophores, while Pla. irregularis has amorphous conidiophores and 3-septate conidia. Pleurotheciella verrucosa has cylindrical or verrucolose conidiogenous cells, 1-septate, narrowly fusiform, meniscus or subclavate conidia. Pleurothecium jiangxiense characterized in having conidiogenous cells with dense cylindrical denticles and short conidiophores. Pleurothecium obovoideum was transferred to Neomonodictys based on phylogenetic evidence. All species are compared with other similar species and comprehensive descriptions, micrographs, and phylogenetic data are provided.

3.
Small ; : e2405193, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252656

ABSTRACT

Surface-enhanced Raman scattering (SERS) is widely used in all kinds of detection due to its ultrahigh sensitivity and selectivity. Micromotors, when used as SERS sensors, or the so-called "hotspots on the fly", can combine both controlled mobility and SERS sensing capacity, and are ideal for versatile in situ detection. In this work, mobile SERS sensors are successfully fabricated by growing gold nanospikes onto magnetic microsphere surfaces. These mobile micromotors can act as normal SERS sensors, characterized by the trace detection of thiram, a highly toxic fungicide. The detection limit can reach 0.1 nM, as good as most other noble metal deposited substrates. With significant magnetic gradient forces, separation of pathogenic bacteria from bulk solution is achieved once these magnetic micromotors bind with bacterial cells. Manipulated propulsion of micromotors, on the other hand, enables them to approach and contact pathogenic bacterial cells on command and further acquire Raman spectra under a controlled degree of contact, a capability never seen with passive sensors. The robotic SERS sensors have demonstrated unique sensing characteristics with controlled manipulations along with discriminative detection between bacterial species.

4.
J Control Release ; 375: 346-365, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39271059

ABSTRACT

Recent advances in clinical passive immunotherapy have provided compelling evidence that eliminating amyloid-ß (Aß) slows cognitive decline in Alzheimer's disease (AD). However, the modest benefits and side effects observed in clinical trials indicate that current immunotherapy therapy is not a panacea, highlighting the need for a deeper understanding of AD mechanisms and the significance of early intervention through optimized immunotherapy or immunoprevention. This review focuses on the centrality of Aß pathology in AD and summarizes recent clinical progress in passive and active immunotherapies targeting Aß, discussing their lessons and failures to inform future anti-Aß biotherapeutics design. Various delivery strategies to optimize Aß-targeting immunotherapies are outlined, highlighting their benefits and drawbacks in overcoming challenges such as poor stability and limited tissue accessibility of anti-Aß biotherapeutics. Additionally, the perspectives and challenges of immunotherapy and immunoprevention targeting Aß are concluded in the end, aiming to guide the development of next-generation anti-Aß immunotherapeutic agents towards improved efficacy and safety.

5.
PLoS Pathog ; 20(9): e1012541, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250508

ABSTRACT

Inflammatory bowel disease (IBD) is an immune system disorder primarily characterized by colitis, the exact etiology of which remains unclear. Traditional treatment approaches currently yield limited efficacy and are associated with significant side effects. Extensive research has indicated the potent therapeutic effects of probiotics, particularly Lactobacillus strains, in managing colitis. However, the mechanisms through which Lactobacillus strains ameliorate colitis require further exploration. In our study, we selected Lactobacillus gasseri ATCC33323 from the intestinal microbiota to elucidate the specific mechanisms involved in modulation of colitis. Experimental findings in a DSS-induced colitis mouse model revealed that L. gasseri ATCC33323 significantly improved physiological damage in colitic mice, reduced the severity of colonic inflammation, decreased the production of inflammatory factors, and preserved the integrity of the intestinal epithelial structure and function. It also maintained the expression and localization of adhesive proteins while improving intestinal barrier permeability and restoring dysbiosis in the gut microbiota. E-cadherin, a critical adhesive protein, plays a pivotal role in this protective mechanism. Knocking down E-cadherin expression within the mouse intestinal tract significantly attenuated the ability of L. gasseri ATCC33323 to regulate colitis, thus confirming its protective role through E-cadherin. Finally, transcriptional analysis and in vitro experiments revealed that L. gasseri ATCC33323 regulates CDH1 transcription by affecting NR1I3, thereby promoting E-cadherin expression. These findings contribute to a better understanding of the specific mechanisms by which Lactobacillus strains alleviate colitis, offering new insights for the potential use of L. gasseri as an alternative therapy for IBD, particularly in dietary supplementation.


Subject(s)
Cadherins , Colitis , Dextran Sulfate , Intestinal Mucosa , Lactobacillus gasseri , Probiotics , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/metabolism , Colitis/therapy , Cadherins/metabolism , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Dextran Sulfate/toxicity , Probiotics/pharmacology , Lactobacillus gasseri/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Gastrointestinal Microbiome , Humans
6.
Nano Lett ; 24(34): 10631-10641, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39150779

ABSTRACT

Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Doxorubicin , Humans , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Lipids/chemistry , MCF-7 Cells , Photothermal Therapy , Drug Resistance, Neoplasm/drug effects , Mice , Temperature , Nanoparticles/chemistry , Drug Liberation , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Drug Resistance, Multiple/drug effects
7.
J Sep Sci ; 47(16): e2400337, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189599

ABSTRACT

Sample pretreatment technology is crucial for drug analysis and detection, because the effect of sample pretreatment directly determinates the final analysis results. In recent years, with the continuous innovation of microextraction and other technologies like material preparation technologies and assistant technologies for extraction, the sample pretreatment techniques in the process of drug analysis have become more and more mature and diverse. This article takes amphetamine (AM) or methamphetamine as an example to review the recent development of pretreatment methods for AM-containing biological samples from the perspectives of extraction techniques, extraction media and auxiliary technologies. Extraction techniques are summarized with the categories of contact microextraction, separate microextraction and membrane-based microextraction for better guidance of application according to their features. Prevailing and innovative extraction media including carbon-based material, silicon-based material, metal organic framework, molecularly selective materials, supramolecular solvents and ionic liquids are reviewed. Auxiliary technologies like magnetic field, electric field, microwave, ultrasound and so on which can enhance extraction efficiency and accuracy are also reviewed. In the last, prospects of the future development of pretreatment technology for the analysis of AM biological samples are provided.


Subject(s)
Amphetamine , Humans , Amphetamine/analysis , Amphetamine/chemistry , Solid Phase Microextraction
8.
ACS Omega ; 9(33): 35589-35599, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39184481

ABSTRACT

Hydraulic fracturing has become a key technology for the development of unconventional oil and gas resources, such as deep shale. Due to the development of natural fractures in deep shale reservoirs, the opening of natural fractures during the fracturing process can cause a significant loss of fracturing fluid, resulting in a reduction in the width of the main fracture and construction risks, such as sand plugging. It is important to improve the fracturing effect of deep shale reservoirs by plugging natural fractures with solid phases, reducing filtration, and improving the efficiency of the fracturing fluid. Ensuring the effectiveness of solid plugging is key to optimizing the fracturing design and improving the stimulation effect after fracturing. In this study, solid plugging technology is introduced into the filtration control process of natural fractures. By setting a plugging zone with a certain length and permeability inside the natural fracture, a stability prediction model for the plugging zone of natural fractures is established, and the instability conditions of the plugging zone are analyzed. The simulation results indicate that the instability of the plugging zone is related to permeability and there is a critical permeability. When the permeability of the plugging zone is greater than this value, expansion instability will occur, and when it is less than or equal to this value, shear slip instability may occur. The strength of shear slip instability is mainly determined by the length of the plugging zone, the friction angle of the natural fracture surface, the friction angle between the plugging particles, and the porosity of the plugging zone. The friction angle of natural fracture surfaces affects only the strength of slip instability, while the friction angle of plugging particles and porosity mainly affect the strength of shear instability. The research results provide a theoretical basis for the optimization of fracturing construction parameters in deep shale reservoirs.

9.
FASEB J ; 38(15): e23852, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39101942

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.


Subject(s)
Exosomes , Osteoarthritis , Temporomandibular Joint , Exosomes/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Rats , Male , Humans , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Stem Cells/cytology , Stem Cells/metabolism , Rats, Sprague-Dawley , Urine/cytology , Temporomandibular Joint Disorders/therapy , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Female , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
10.
NPJ Precis Oncol ; 8(1): 157, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060449

ABSTRACT

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal original tumor in gastrointestinal (GI) tract and is considered to have varying malignant potential. With the advancement of computer science, radiomics technology and deep learning had been applied in medical researches. It's vital to construct a more accurate and reliable multimodal predictive model for recurrence-free survival (RFS) aiding for clinical decision-making. A total of 254 patients underwent surgery and pathologically diagnosed with GIST in The First Hospital of China Medical University from 2019 to 2022 were included in the study. Preoperative contrast enhanced computerized tomography (CE-CT) and hematoxylin/eosin (H&E) stained whole slide images (WSI) were acquired for analysis. In the present study, we constructed a sum of 11 models while the multimodal model (average C-index of 0.917 on validation set in 10-fold cross validation) performed the best on external validation cohort with an average C-index of 0.864. The multimodal model also reached statistical significance when validated in the external validation cohort (n = 42) with a p-value of 0.0088 which pertained to the recurrence-free survival (RFS) comparison between the high and low groups using the optimal threshold on the predictive score. We also explored the biological significance of radiomics and pathomics features by visualization and quantitative analysis. In the present study, we constructed a multimodal model predicting RFS of GIST which was prior over unimodal models. We also proposed hypothesis on the correlation between morphology of tumor cell and prognosis.

11.
RSC Adv ; 14(32): 23023-23036, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39040701

ABSTRACT

Aqueous zinc ion batteries (AZIBs) have garnered considerable interest as an eco-friendly, safe, and cost-effective energy storage solution. Although significant strides have been made in recent years, there remain technical hurdles to overcome. Herein, this review summarizes in detail the primary challenges confronting aqueous zinc ion batteries, including the rampant dendrite growth, and water-induced parasitic reactions, and proposes host-engineering modification strategies focusing on optimizing the structure design of the zinc anode substrates, involving three-dimensional structure design, zincophilicity regulation, and epitaxial-oriented modification, and comprehensively analyzes the structure-activity relationship between different modification strategies and battery performance. In addition, we highlight the research trends and prospects in future anode modification for aqueous zinc-ion batteries. This work offers valuable insights into advanced Zn anode constructions for further applications in high-performance AZIBs.

12.
MycoKeys ; 106: 117-132, 2024.
Article in English | MEDLINE | ID: mdl-38948914

ABSTRACT

The rotting wood in freshwater is a unique eco-environment favoring various fungi. During our investigation of freshwater fungi on decaying wood, three hyphomycetes were collected from Jiangxi and Guangxi Provinces, China. Based on the morphological observations and phylogenetic analysis of a combined DNA data containing ITS, LSU, SSU and tef1-α sequences, two new Trichobotrys species, T.meilingensis and T.yunjushanensis, as well as a new record of T.effusa, were introduced. Additionally, a comprehensive description of the genus with both morphological and molecular data was first provided.

13.
Langmuir ; 40(26): 13515-13526, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887887

ABSTRACT

Carbon nanotubes (CNTs) can be regarded as a potential platform for transmembrane drug delivery as many experimental works have demonstrated their capability to effectively transport bioactive molecules into living cells. Within this framework, the loading of a peptide drug onto either the interior or exterior of CNTs has gained considerable interest. This study aims to conduct a comprehensive comparison of these two loading methods. To this end, we performed molecular dynamics simulations and the umbrella sampling technique to investigate the interaction energy, conformational changes, and free energy changes of a model peptide drug containing α-helical structure interacting with the inner or outer walls of a 14.7-nm-long (20,20) CNT. Our finding reveals that, for a tube of such dimensions, it is thermodynamically more favorable for the peptide to be loaded onto the inner tube wall than the outer tube wall, primarily due to a larger free energy change for the former strategy. Conversely, unloading the drug from the tube interior poses greater challenges. Moreover, the tube's curvature plays an essential role in influencing the conformation of the adsorbed peptide. Despite the relatively weaker van der Waals interaction between the CNT exterior and the peptide, loading the peptide onto the exterior may induce significant conformational changes, particularly affecting the peptide's α-helix structure. In contrast, loading of the peptide on the CNT interior could maintain most of the α-helical content. CNTs do not typically attract specific peptide residues, with adsorbed groups primarily determined by the peptide's configurations and orientations. Finally, we offer a guideline for selecting an optimal loading strategy for CNT-based drug delivery.


Subject(s)
Molecular Dynamics Simulation , Nanotubes, Carbon , Peptides , Nanotubes, Carbon/chemistry , Peptides/chemistry , Thermodynamics , Drug Carriers/chemistry
14.
J Control Release ; 371: 588-602, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866245

ABSTRACT

Immunosuppressive microenvironment and poor immunogenicity are two stumbling blocks in anti-tumor immune activation. Tumor associated macrophages (TAMs) play crucial roles in immunosuppressive microenvironment, while immunogenic cell death (ICD) is a typical strategy to boost immunogenicity. Herein, we developed a coordinative modular assembly-based self-reinforced nanoparticle, (CaO2/TA)-(Fe3+/BSA) which integrated CaO2, Fe3+-tannic acid coordinated networks and albumin under the instruction of molecular dynamics simulation. (CaO2/TA)-(Fe3+/BSA) could significantly enhance Fenton reaction through Fe3+ self-reduction and H2O2 self-sufficiency, and simultaneously increased intracellular accumulation of Ca2+. The self-augmented Fenton reaction with sufficient reactive oxygen species effectively repolarized TAMs and elicited ICD with Ca2+ overload. Besides, (CaO2/TA)-(Fe3+/BSA) was confirmed to self-reinforce deep tumor drug delivery by "treatment-delivery" positive feedback based on gp60-mediated transcytosis and M2-like macrophages repolarization-mediated perfusion promotion. Resultantly, (CaO2/TA)-(Fe3+/BSA) effectively alleviated immunosuppression, provoked local and systemic immune response and potentiated anti-PD-1 antibody therapy. Our strategy highlights a facile and controllable approach to construct penetrated effective antitumor nano-immunotherapeutic agent.


Subject(s)
Antineoplastic Agents , Nanoparticles , Tumor Microenvironment , Animals , Nanoparticles/chemistry , Mice , Tumor Microenvironment/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oxides/chemistry , Oxides/administration & dosage , Calcium Compounds/chemistry , Female , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Mice, Inbred BALB C , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Humans , Calcium/metabolism , Immunogenic Cell Death/drug effects , Drug Delivery Systems , Immunotherapy/methods
15.
Adv Sci (Weinh) ; 11(32): e2309314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923275

ABSTRACT

Hypervascularized glioblastoma is naturally sensitive to anti-angiogenesis but suffers from low efficacy of transient vasculature normalization. In this study, a lipid-polymer nanoparticle is synthesized to execute compartmentalized Cas9 and sgRNA delivery for a permanent vasculature editing strategy by knocking out the signal transducer and activator of transcription 3 (STAT3). The phenylboronic acid branched cationic polymer is designed to condense sgRNA electrostatically (inner compartment) and patch Cas9 coordinatively (outer compartment), followed by liposomal hybridization with angiopep-2 decoration for blood-brain barrier (BBB) penetration. The lipid-polymer nanoparticles can reach glioblastoma within 2 h post intravenous administration, and hypoxia in tumor cells triggers charge-elimination and degradation of the cationic polymer for burst release of Cas9 and sgRNA, accompanied by instant Cas9 RNP assembly, yielding ≈50% STAT3 knockout. The downregulation of downstream vascular endothelial growth factor (VEGF) reprograms vasculature normalization to improve immune infiltration, collaborating with interleukin-6 (IL-6) and interleukin-10 (IL-10) reduction to develop anti-glioblastoma responses. Collectively, the combinational assembly for compartmentalized Cas9/sgRNA delivery provides a potential solution in glioblastoma therapy.


Subject(s)
Glioblastoma , Nanoparticles , Polymers , Glioblastoma/metabolism , Glioblastoma/genetics , Glioblastoma/drug therapy , Nanoparticles/chemistry , Mice , Animals , Polymers/chemistry , Humans , Lipids/chemistry , RNA, Guide, CRISPR-Cas Systems/genetics , Disease Models, Animal , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Blood-Brain Barrier/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems
16.
Front Endocrinol (Lausanne) ; 15: 1366219, 2024.
Article in English | MEDLINE | ID: mdl-38887267

ABSTRACT

Objective: The aim of this study was to develop a nomogram, using serum thymidine kinase 1 protein (STK1p) combined with ultrasonography parameters, to early predict central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) pre-surgery. Methods: Patients with PTC pre-surgery in January 2021 to February 2023 were divided into three cohorts: the observation cohort (CLNM, n = 140), the control cohort (NCLNM, n = 128), and the external verification cohort (CLNM, n = 50; NCLNM, n = 50). STK1p was detected by an enzyme immunodot-blot chemiluminescence analyzer and clinical parameters were evaluated by ultrasonography. Results: A suitable risk threshold value for STK1p of 1.7 pmol/L was selected for predicting CLNM risk by receiver operating characteristic (ROC) curve analysis. Multivariate analysis identified the following six independent risk factors for CLNM: maximum tumor size >1 cm [odds ratio (OR) = 2.406, 95% confidence interval (CI) (1.279-4.526), p = 0.006]; capsule invasion [OR = 2.664, 95% CI (1.324-5.360), p = 0.006]; irregular margin [OR = 2.922; 95% CI (1.397-6.111), p = 0.004]; CLN flow signal [OR = 3.618, 95% CI (1.631-8.027), p = 0.002]; tumor-foci number ≥2 [OR = 4.064, 95% CI (2.102-7.859), p < 0.001]; and STK1p ≥1.7 pmol/L [OR = 7.514, 95% CI (3.852-14.660), p < 0.001]. The constructed nomogram showed that the area under the ROC curve for the main dataset was 0.867 and that for the validation dataset was 0.830, exhibiting effectivity, and was recalculated to a total score of approximately 383. Through monitoring the response post-surgery, all patients were assessed as tumor-free at 12 months post-surgery, which was significantly associated with a reduction in STK1p to disease-free levels. Conclusion: We demonstrate for the first time that a novel nomogram including STK1p combined with ultrasonography can assist in the clinical prevention of CLNM, by facilitating timely, individualized prophylactic CLNM dissection, thereby reducing the risk of secondary surgery and the probability of recurrence.


Subject(s)
Lymphatic Metastasis , Nomograms , Thymidine Kinase , Thyroid Cancer, Papillary , Thyroid Neoplasms , Ultrasonography , Humans , Male , Female , Thymidine Kinase/blood , Middle Aged , Adult , Thyroid Cancer, Papillary/blood , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Neoplasms/blood , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Thyroid Neoplasms/diagnostic imaging , Ultrasonography/methods , Biomarkers, Tumor/blood , Risk Factors , ROC Curve , Prognosis , Aged , Young Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery
17.
Polymers (Basel) ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891544

ABSTRACT

Plant-derived PA10T is regarded as one of the most promising semi-aromatic polyamides; however, shortcomings, including low dimensional accuracy, high moisture absorption, and relatively high dielectric constant and loss, have impeded its extensive utilization. Polymer blending is a versatile and cost-effective method to fabricate new polymeric materials with excellent comprehensive performance. In this study, various ratios of PA10T/PPO blends were fabricated via melt blending with the addition of a SEBS-g-MAH compatibilizer. Molau test and scanning electron microscopy (SEM) were employed to study the influence of SEBS-g-MAH on the compatibility of PA10T and PPO. These studies indicated that SEBS-g-MAH effectively refines the domain size of the dispersed PPO phase and improves the dispersion stability of PPO particles within a hexafluoroisopropanol solvent. This result was attributed to the in situ formation of the SEBS-g-PA10T copolymer, which serves as a compatibilizer. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results showed that the melting-crystallization behavior and thermal stability of blends closely resembled that of pure PA10T. Dynamic mechanical analysis (DMA) revealed that as the PPO content increased, there was a decrease in the glass transition temperature and storage modulus of PA10T. The water absorption rate, injection molding shrinkage, dielectric properties, and mechanical strength of blends were also systematically investigated. As the PPO content increased from 10% to 40%, the dielectric loss at 2.5 GHz decreased significantly from 0.00866 to 0.00572, while the notched Izod impact strength increased from 7.9 kJ/m2 to 13.7 kJ/m2.

18.
J Cell Mol Med ; 28(11): e18472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842129

ABSTRACT

Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.


Subject(s)
Apoptosis , Calcium , Chondrocytes , Endoplasmic Reticulum Stress , Ion Channels , Osteoarthritis , Temporomandibular Joint , Chondrocytes/metabolism , Chondrocytes/pathology , Ion Channels/metabolism , Ion Channels/genetics , Animals , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Calcium/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Humans , Mice , Signal Transduction , Spider Venoms , Intercellular Signaling Peptides and Proteins
19.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892264

ABSTRACT

Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.


Subject(s)
Anticonvulsants , Drug Discovery , Epilepsy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Animals , Drug Discovery/methods , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Drug Development
SELECTION OF CITATIONS
SEARCH DETAIL