Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Trends Biotechnol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39095256

ABSTRACT

In seeking sustainable environmental strategies, microbial biophotoelectrochemistry (BPEC) systems represent a significant advancement. In this review, we underscore the shift from conventional bioenergy systems to sophisticated BPEC applications, emphasizing their utility in leveraging solar energy for essential biochemical conversions. Recent progress in BPEC technology has facilitated improved photoelectron transfer and system stability, resulting in substantial advancements in carbon and nitrogen fixation, degradation of pollutants, and energy recovery from wastewater. Advances in system design and synthetic biology have expanded the potential of BPEC for environmental clean-up and sustainable energy generation. We also highlight the challenges of environmental BPEC systems, ranging from performance improvement to future applications.

2.
Bioresour Technol ; 408: 131167, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067708

ABSTRACT

Little is known about the synergistic effects of abiotic aging and biodegradation on microplastics (MPs) transformation in the environment. Herein, a hybrid process of MPs degradation was proposed by analyzing the effect of microorganisms and abiotic aging on aging MPs and non-aging MPs degradation during composting. The results showed that composting facilitated the oxidation and depolymerization of aging MPs, and its degradation efficiency was about three times that of non-aging MPs. Further investigation revealed that aging MPs contained higher abundance of plastic-degrading bacteria and enzyme activity than non-aging MPs. In addition, free radicals also influenced the degradation of MPs. However, path model and shielding experiments confirmed that free radicals mainly facilitated the non-aging MPs degradation (contribution was 68.8 %), while aging MPs was easily degraded by microorganisms (contribution was 72.6 %). This study provides promising strategies for scaling up plastic treatment in bioreactors through a hybrid collaboration of biological and abiotic processes.

3.
ISME J ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030691

ABSTRACT

Arthropods, such as houseflies, play a significant role on the dissemination of antimicrobial resistance (AMR); however, their impact has often been overlooked in comparison to other AMR vectors. Understanding the contribution of arthropods to the spread of AMR is critical for implementing robust policies to mitigate the spread of AMR across "One Health" sectors. Herein, we investigated the in-situ transfer of a gfp-labelled AMR plasmid (IncA/C carrying a mcr-8 gene, pA/C_MCR-8) in the gut microbiota of housefly (Musca domestica) by applying single-cell sorting, 16S rRNA gene amplicon sequencing, and whole genome sequencing. Our findings demonstrate that the pA/C_MCR-8 positive E. coli donor strain is capable of colonizing the gut microbiome of houseflies and persists in the housefly intestine for five days, however, no transfer was detectable above the detection threshold of 10-5 per cell. The conjugative plasmid, pA/C_MCR-8 demonstrated a high transfer frequency ranging from 4.1 × 10-3 to 5.0 × 10-3 per cell in vitro, and exhibited transfer across various bacterial phyla, primarily encompassing Pseudomonadota and Bacillota. Phylogenic analysis has revealed that Providencia stuartii, a human opportunistic pathogen, was a notable recipient of pA/C_MCR-8. The conjugation assays further revealed that newly formed P. stuartii transconjugants readily transfer pA/C_MCR-8 to other clinically relevant pathogens (e.g. Klebsiella pneumoniae). Our findings indicate the potential transfer of AMR plasmids from houseflies to human opportunistic pathogens and further advocates the adoption of a One Health approach in developing infection control policies that address AMR across clinical settings.

4.
J Hazard Mater ; 477: 135259, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39047570

ABSTRACT

Struvite recovery from wastewater offers a sustainable phosphorus and nitrogen source, yet it harbors the challenge of variable antibiotic residues, notably oxytetracycline (OTC), increasing the ecological risk during subsequent use. Despite the need, mechanisms behind these residues and regulatory solutions remain obscure. We characterized OTC in recovered struvite and showed that increased dissolved organic matter (DOM) enhanced OTC accumulation, while PO43- suppressed it. NH4+ modulated OTC levels through the saturation index (SI), with a rise in SI significantly reducing OTC content. Additionally, excess Mg2+ formed complexes with OTC and DOM (humic acid, HA), leading to increased residue levels. Complexation was stronger at higher pH, whereas electrostatic interactions dominated at lower pH. The primary binding sites for antibiotics and DOM were Mg-OH and P-OH groups in struvite. OTC's dimethylamino, amide, and phenolic diketone groups primarily bound to struvite and DOM, with the carboxyl group of DOM serving as the main binding site. Mg2+ complexation was the primary pathway for OTC transportation, whereas electrostatic attraction of PO43- dominated during growth. Controlling magnesium (Mg) dosage and adjusting pH were effective for reducing OTC in recovered products. Our findings provided insights into the intricate interactions between struvite and antibiotics, laying the groundwork for further minimizing antibiotic residues in recovered phosphorus products.

5.
Nat Commun ; 15(1): 5682, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971854

ABSTRACT

Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria's ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.


Subject(s)
Methane , Photosynthesis , Synechocystis , Methane/metabolism , Synechocystis/metabolism , Oxidation-Reduction , Methanosarcina barkeri/metabolism , Oxygen/metabolism , Biofilms/growth & development , Anaerobiosis , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Light , Archaea/metabolism , Archaea/genetics
6.
Appl Environ Microbiol ; : e0069524, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078126

ABSTRACT

While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.

7.
Arch Microbiol ; 206(7): 337, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954015

ABSTRACT

Two Gram-staining-negative, facultative anaerobic, rod-shaped and phosphate-solubilizing strains designated SG2303T and SG2305, were isolated from paddy soil in China. Phylogenetic analysis based on 16 S rRNA gene sequences indicated that SG2303T and SG2305 represented a member of the genus Crenobacter within the family Neisseriaceae of the phylum Pseudomonadota. Strain SG2303T displayed higher 16 S rRNA gene sequence similarities with members of the genus Crenobacter ranging from 93.5 to 94.0%. Strains C. luteus YIM 78141T and C. cavernae K1W11S-77T were closest related to the isolated strains and were considered as type strains. Growth of strain SG2303T occurred at 10-55 °C (optimum 37 °C), pH 5.0-9.0 (optimum pH 6.0-7.0) and 0-1% (w/v) NaCl (optimum 0%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG2303T and its closely related taxa were 76.1-78.2% and 20.5-22.1%, respectively. The genomic DNA G + C content was 62.2%. The quinone of strain SG2303T was Q-8. The major fatty acids (> 10%) of strain SG2303T were C16:0 (30.6%), summed feature 3 (C16:1ω7c and/or C16:1ω6c) (26.0%) and C12:0 3OH (12.1%). The polar lipids were phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phospholipids (PL), glycolipid (GL) and unidentified lipids (UL). Based on the results of the phylogenetic, physiological, biochemical, and morphological analysis, strain SG2303T is recognized as a novel species of the genus Crenobacter, for which the name Crenobacter oryzisoli sp. nov. is proposed. The type strain is SG2303T (= GDMCC 1.3970T = JCM 36468T). In addition, SG2303T was also able of phosphorus solubilization and promoting the growth of rice seeds. Strain SG2303T exhibited a relatively high dissolvable phosphorus content of 2.52 µg·mL- 1.


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phosphates , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Fatty Acids/metabolism , Fatty Acids/chemistry , China , Phosphates/metabolism , Nucleic Acid Hybridization , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Oryza/microbiology , Oryza/growth & development
8.
Nat Commun ; 15(1): 4992, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862519

ABSTRACT

It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.


Subject(s)
Biofilms , Rhodopseudomonas , Water , Biofilms/growth & development , Rhodopseudomonas/metabolism , Rhodopseudomonas/growth & development , Water/chemistry , Water/metabolism , Photosynthesis , Electrons , Carbon Cycle , Nitrates/metabolism , Bioelectric Energy Sources/microbiology
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38916438

ABSTRACT

Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.


Subject(s)
Biofilms , Geobacter , Prophages , Biofilms/growth & development , Geobacter/genetics , Geobacter/physiology , Prophages/genetics , Prophages/physiology , Bioelectric Energy Sources/microbiology , Microbial Interactions , Transcriptome
10.
Bioresour Technol ; 404: 130910, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821423

ABSTRACT

Reactive oxygen species (ROS) is produced in the composting, which effectively promote organic matter transformation and humification process, but the effect of ROS on greenhouse gas emissions in this process has not been understood. This study proposed and validated that ROS can effectively reduce greenhouse gas emissions intheprocessofcomposting. Compared with ordinary thermophilic composting (oTC), thermophilic composting (imTC) that was supplemented by iron mineral increased ROS production by 1.38 times, and significantly reduced greenhouse gas emissions by 45.12%. Microbial community analysis showed no significant difference in the abundance of microbes involved in greenhouse gas production between oTC and imTC. Further correlation analysis proved that ROS played a crucial role in influencing greenhouse gas emissions throughout the composting process, especially in the initial phase. These findings provide new strategies for managing livestock and poultry manure to mitigate climate change.


Subject(s)
Composting , Greenhouse Gases , Reactive Oxygen Species , Composting/methods , Reactive Oxygen Species/metabolism , Manure , Soil Microbiology , Animals , Soil/chemistry
11.
Water Res ; 257: 121743, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728775

ABSTRACT

Effective deep-dewatering is crucial for wastewater sludge management. Currently, the dominant methods focus on promoting cell lysis to release intracellular water, but these techniques often lead to secondary pollution and require stringent conditions, limiting their practical use. This study explores an innovative method using a commercially available complex quaternary ammonium salt surfactant, known as G-agent. This agent remarkably reduces the sludge water content from 98.6 % to 56.8 % with a low dosage (50 mg/g DS) and under neutral pH conditions. This approach surpasses Fenton oxidation in terms of dewatering efficiency and avoids the necessity for cell lysis and bound water release, thereby reducing the risk of secondary pollution in the filtrate, including heavy metals, nitrogen, phosphorus, and other contaminants. The G-agent plays a significant role in destabilizing flocs and enhancing flocculation during the conditioning and initial dewatering stages, effectively reducing the solid-liquid interfacial affinity of the sludge. In the compression filtration stage, the agent's solidification effect is crucial in forming a robust skeleton that improves pore connectivity within the filter cake, leading to increased water permeability, drainage performance and water flow-out efficiency. This facilitates deep dewatering of sludge without cell lysis. The study reveals that the G-agent primarily improves water flow-out efficiency rather than water flowability, indicating that cell lysis and bound water release are not indispensable prerequisites for sludge deep-dewatering. Furthermore, it presents an encouraging prospect for overcoming the limitations associated with conventional sludge deep-dewatering processes.


Subject(s)
Flocculation , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Filtration , Water/chemistry , Surface-Active Agents/chemistry
12.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755437

ABSTRACT

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Subject(s)
Base Composition , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Fatty Acids/metabolism , Bacterial Typing Techniques , China , Phospholipids/analysis , Nitrogen Fixation , Sequence Analysis, DNA , Nitrogen-Fixing Bacteria/classification , Nitrogen-Fixing Bacteria/genetics , Nitrogen-Fixing Bacteria/isolation & purification , Nitrogen-Fixing Bacteria/metabolism
13.
ISME Commun ; 4(1): ycae058, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38770058

ABSTRACT

Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.

14.
Antonie Van Leeuwenhoek ; 117(1): 68, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630330

ABSTRACT

In this research, two novel Fe(III)-reducing bacteria, SG10T and SG198T of genus Geothrix, were isolated from the rice field of Fujian Agriculture and Forestry University in Fuzhou, Fujian Province, China. Strains SG10T and SG198T were strictly anaerobic, rod-shaped and Gram-stain-negative. The two novel strains exhibited iron reduction ability, utilizing various single organic acid as the elector donor and Fe(III) as a terminal electron acceptor. Strains SG10T and SG198T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix oryzisoli SG189T (99.0-99.5%) and Geothrix paludis SG195T (99.0-99.7%), respectively. The phylogenetic trees based on the 16S rRNA gene and genome 120 conserved core genes showed that strains SG10T and SG198T belong to the genus Geothrix. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the phylogenetic neighbors and the two isolated strains were 86.1-94.3% and 30.7-59.5%, respectively. The major fatty acids were iso-C15:0, anteiso-C15:0, C16:0 and iso-C13:0 3OH, and MK-8 was the main respiratory quinone. According to above results, the two strains were assigned to the genus Geothrix with the names Geothrix campi sp. nov. and Geothrix mesophila sp. nov. Type strains are SG10T (= GDMCC 1.3406 T = JCM 39331 T) and SG198T (= GDMCC 62910 T = KCTC 25635 T), respectively.


Subject(s)
Ferric Compounds , Soil , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Acidobacteria , Bacteria , DNA
15.
Nat Commun ; 15(1): 3654, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688912

ABSTRACT

The horizontal transfer of plasmids has been recognized as one of the key drivers for the worldwide spread of antimicrobial resistance (AMR) across bacterial pathogens. However, knowledge remain limited about the contribution made by environmental stress on the evolution of bacterial AMR by modulating horizontal acquisition of AMR plasmids and other mobile genetic elements. Here we combined experimental evolution, whole genome sequencing, reverse genetic engineering, and transcriptomics to examine if the evolution of chromosomal AMR to triclosan (TCS) disinfectant has correlated effects on modulating bacterial pathogen (Klebsiella pneumoniae) permissiveness to AMR plasmids and phage susceptibility. Herein, we show that TCS exposure increases the evolvability of K. pneumoniae to evolve TCS-resistant mutants (TRMs) by acquiring mutations and altered expression of several genes previously associated with TCS and antibiotic resistance. Notably, nsrR deletion increases conjugation permissiveness of K. pneumoniae to four AMR plasmids, and enhances susceptibility to various Klebsiella-specific phages through the downregulation of several bacterial defense systems and changes in membrane potential with altered reactive oxygen species response. Our findings suggest that unrestricted use of TCS disinfectant imposes a dual impact on bacterial antibiotic resistance by augmenting both chromosomally and horizontally acquired AMR mechanisms.


Subject(s)
Bacteriophages , Klebsiella pneumoniae , Plasmids , Triclosan , Triclosan/pharmacology , Plasmids/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/virology , Bacteriophages/genetics , Bacteriophages/physiology , Drug Resistance, Multiple, Bacterial/genetics , Mutation , Gene Transfer, Horizontal , Whole Genome Sequencing , Evolution, Molecular , Anti-Bacterial Agents/pharmacology
16.
ISME Commun ; 4(1): ycae030, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38524761

ABSTRACT

Biological nitrogen fixation (BNF) by methanotrophic bacteria has been shown to play an important role in maintaining fertility. However, this process is still limited to aerobic methane oxidation with sufficient oxygen. It has remained unknown whether and how methanotrophic BNF proceeds in hypoxic environments. Herein, we incubated paddy soils with a ferrihydrite-containing mineral salt medium to enrich methanotrophic bacteria in the presence of methane (20%, v/v) under oxygen constraints (0.27%, v/v). The resulting microcosms showed that ferrihydrite-dependent aerobic methane oxidation significantly contributed (81%) to total BNF, increasing the 15N fixation rate by 13-fold from 0.02 to 0.28 µmol 15N2 (g dry weight soil) -1 d-1. BNF was reduced by 97% when ferrihydrite was omitted, demonstrating the involvement of ferrihydrite in methanotrophic BNF. DNA stable-isotope probing indicated that Methylocystis, Methylophilaceae, and Methylomicrobium were the dominant methanotrophs/methylotrophs that assimilated labeled isotopes (13C or 15N) into biomass. Metagenomic binning combined with electrochemical analysis suggested that Methylocystis and Methylophilaceae had the potential to perform methane-induced BNF and likely utilized riboflavin and c-type cytochromes as electron carriers for ferrihydrite reduction. It was concluded that ferrihydrite mediated methanotrophic BNF by methanotrophs/methylotrophs solely or in conjunction with iron-reducing bacteria. Overall, this study revealed a previously overlooked yet pronounced coupling of iron-dependent aerobic methane oxidation to BNF and improves our understanding of methanotrophic BNF in hypoxic zones.

17.
Microbiol Res ; 282: 127669, 2024 May.
Article in English | MEDLINE | ID: mdl-38442455

ABSTRACT

Body size is an important life-history trait that affects organism niche occupancy and ecological interactions. However, it is still unclear to what extent the assembly process of organisms with different body sizes affects soil biogeochemical cycling processes at the aggregate level. Here, we examined the diversity and community assembly of soil microorganisms (bacteria, fungi, and protists) and microfauna (nematodes) with varying body sizes. The microbial functional potential associated with carbon, nitrogen, phosphorus, and sulfur metabolism within three soil aggregate sizes (large macroaggregates, > 2 mm; small macroaggregates, 0.25-2 mm; and microaggregates, < 0.25 mm) were determined by metagenomics. We found that the smallest microbes (bacteria) had higher α-diversity and lower ß-diversity and were mostly structured by stochastic processes, while all larger organisms (fungi, protists, and nematodes) had lower α-diversity and were relatively more influenced by deterministic processes. Structural equation modeling indicated that the microbial functional potential associated with carbon, nitrogen, phosphorus, and sulfur metabolism was mainly influenced by the bacterial and protist diversity in microaggregates. In contrast, the microbial functional potential was primarily mediated by the assembly processes of four organism groups, especially the nematode community in macroaggregates. This study reveals the important roles of soil organisms with different body sizes in the functional potential related to nutrient cycling, and provides new insights into the ecological processes structuring the diversity and community assembly of organisms of different body sizes at the soil aggregate level, with implications for soil nutrient cycling dynamics.


Subject(s)
Nematoda , Soil , Animals , Soil/chemistry , Soil Microbiology , Fungi , Body Size , Carbon , Nitrogen , Phosphorus , Sulfur
18.
Angew Chem Int Ed Engl ; 63(20): e202403884, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38489233

ABSTRACT

Abiotic CH4 production driven by Fenton-type reactive oxygen species (ROS) has been confirmed to be an indispensable component of the atmospheric CH4 budget. While the chemical reactions independent of Fenton chemistry to ROS are ubiquitous in nature, it remains unknown whether the produced ROS can drive abiotic CH4 production. Here, we first demonstrated the abiotic CH4 production at the soil-water interface under illumination. Leveraging this finding, polymeric carbon nitrides (CNx) as a typical analogue of natural geobattery material and dimethyl sulfoxide (DMSO) as a natural methyl donor were used to unravel the underlying mechanisms. We revealed that the ROS, photocatalytically produced by CNx, can oxidize DMSO into CH4 with a high selectivity of 91.5 %. Such an abiotic CH4 production process was further expanded to various non-Fenton-type reaction systems, such as electrocatalysis, pyrocatalysis and sonocatalysis. This work provides insights into the geochemical cycle of abiotic CH4, and offers a new route to CH4 production via integrated energy development.

20.
Waste Manag ; 178: 221-230, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38412754

ABSTRACT

Phages play a crucial role in orchestrating top-down control within microbial communities, influencing the dynamics of the composting process. Despite this, the impact of phage-induced thermophilic bacterial lysis on humification remains ambiguous. This study investigates the effects of phage lysate, derived explicitly from Geobacillus subterraneus, on simulated composting, employing ultrahigh-resolution mass spectrometry and 16S rRNA sequencing techniques. The results show the significant role of phage lysate in expediting humus formation over 40 days. Notably, the rapid transformation of protein-like precursors released from phage-induced lysis of the host bacterium resulted in a 14.8 % increase in the proportion of lignins/CRAM-like molecules. Furthermore, the phage lysate orchestrated a succession in bacterial communities, leading to the enrichment of core microbes, exemplified by the prevalence of Geobacillus. Through network analysis, it was revealed that these enriched microbes exhibit a capacity to convert protein and lignin into essential building blocks such as amino acids and phenols. Subsequently, these components were polymerized into humus, aligning with the phenol-protein theory. These findings enhance our understanding of the intricate microbial interactions during composting and provide a scientific foundation for developing engineering-ready composting humification regulation technologies.


Subject(s)
Bacteriophages , Composting , RNA, Ribosomal, 16S/genetics , Soil , Bacteria , Phenols/analysis , Lignin , Manure , Humic Substances/analysis
SELECTION OF CITATIONS
SEARCH DETAIL