Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
Angew Chem Int Ed Engl ; : e202406511, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712899

Alkali metals (Li, Na, and K) and multivalent metals (Zn, Mg, Ca, and Al) have become star anodes for developing high-energy-density rechargeable batteries due to their high theoretical capacity and excellent conductivity. However, the inevitable dendrites and unstable interfaces of metal anodes pose challenges to the safety and stability of batteries. To address these issues, covalent organic frameworks (COFs), as emerging materials, have been widely investigated due to their regular porous structure, flexible molecular design, and high specific surface area. In this minireview, we summarize the research progress of COFs in stabilizing metal anodes. First, we present the research origins of metal anodes and delve into their advantages and challenges as anodes based on the physical/chemical properties of alkali and multivalent metals. Then, special attention has been paid to the application of COFs in the host design of metal anodes, artificial solid electrolyte interfaces, electrolyte additives, solid-state electrolytes, and separator modifications. Finally, a new perspective is provided for the research of metal anodes from the molecular design, pore modulation, and synthesis of COFs.

2.
Angew Chem Int Ed Engl ; : e202405648, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38660735

The interfacial electric field (IEF) in the heterostructure can accelerate electron transport and ion migration, thereby enhancing the electrochemical performance of potassium-ion batteries (PIBs). Nevertheless, the quantification and modulation of the IEF for high-efficiency PIB anodes currently remains a blank slate. Herein, we achieve for the first time the quantification and tuning of IEF via amorphous carbon-coated undifferentiated cobalt-doped FeSe/Fe3Se4 heterostructure (denoted UN-CoFe4Se5/C) for efficient potassium storage. Co doping can increase the IEF in FeSe/Fe3Se4, thereby improving the electron transport, promoting the potassium adsorption capacity, and lowering the diffusion barrier. As expected, the IEF magnitude in UN-CoFe4Se5/C is experimentally quantified as 62.84 mV, which is 3.65 times larger than that of amorphous carbon-coated FeSe/Fe3Se4 heterostructure (Fe4Se5/C). Benefiting from the strong IEF, UN-CoFe4Se5/C as a PIB anode exhibits superior rate capability (145.8 mAh g-1 at 10.0 A g-1) and long cycle lifespan (capacity retention of 95.1 % over 3000 cycles at 1.0 A g-1). Furthermore, this undifferentiated doping strategy can universally regulate the IEF magnitude in CoSe2/Co9Se8 and FeS2/Fe7S8 heterostructures. This work can provide fundamental insights into the design of advanced PIB electrodes.

3.
Angew Chem Int Ed Engl ; 63(17): e202400868, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38440859

Layered transition metal oxides are extensively considered as appealing cathode candidates for potassium-ion batteries (PIBs) due to their abundant raw materials and low cost, but their further implementations are limited by slow dynamics and impoverished structural stability. Herein, a layered composite having a P2 and P3 symbiotic structure is designed and synthesized to realize PIBs with large energy density and long-term cycling stability. The unique intergrowth of P2 and P3 phases in the obtained layered oxide is plainly characterized by X-ray diffraction refinement, high-angle annular dark field and annular bright field-scanning transmission electron microscopy at atomic resolution, and Fourier transformation images. The synergistic effect of the two phases of this layered P2/P3 composite is well demonstrated in K+ intercalation/extraction process. The as-prepared layered composite can present a large discharge capacity with the remarkable energy density of 321 Wh kg-1 and also manifest excellent capacity preservation after 600 cycles of K+ uptake/removal.

4.
Small ; 20(11): e2311314, 2024 Mar.
Article En | MEDLINE | ID: mdl-38212283

Highly anticipated potassium metal batteries possess abundant potassium reserves and high theoretical capacity but currently suffer from poor cycling stability as a result of dendritic growth and volume expansion. Here, carbon cloths modified with different functional groups treated with ethylene glycol, ethanolamine, and ethylenediamine are designed as 3D hosts, exhibiting different wettability to molten potassium. Among them, the hydroxyl-decorated carbon cloth with a high affinity for potassium can achieve molten potassium perfusion (K@EG-CC) within 3 s. By efficiently inducing the uniform deposition of metal potassium, buffing its volume expansion, and lowering local current density, the developed K@EG-CC anode alleviates the dendrite growth issue. The K@EG-CC||K@EG-CC symmetric battery can be cycled stably for 2100 h and has only a small voltage hysteresis of ≈93 mV at 0.5 mA cm-2 . Moreover, the high-voltage plateau, high energy density, and long cycle life of K metal full batteries can be realized with a low-cost KFeSO4 F@carbon nanotube cathode. This study provides a simple strategy to promote the commercial applications of potassium metal batteries.

5.
Nano Lett ; 23(20): 9594-9601, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37844201

Rechargeable potassium-ion batteries (PIBs) are regarded as potential substitutes for industrial lithium-ion batteries in large scale energy storage systems due to the world's abundant potassium supplies. Althogh cobalt hexacyanocobaltate (CoHCC) exhibits broad potential as a PIB anode material, its performance is currently unsatisfactory. Herein, novel 5 nm scale ultrathin CoHCC nanosheet-assembled nanoboxes with interspersed carbon nanotubes (CNTs/CoHCC nanoboxes) are fabricated to realize a highly reactive PIB anode. The ultrathin CoHCC layers substantially accelerate electron conduction and provide numerous active sites, while the connected CNTs provide fast axial electron transport. Consequently, the optimized anode exhibits a remarkable discharge capacity of 580.9 mAh g-1 at 0.1 A g-1 and long-term stability with 71.3% retention over 1000 cycles. In situ and ex situ characterizations and density functional theory calculations are further employed to elucidate the K+ storage process and the reason for the enhanced performance of the CNTs/CoHCC nanoboxes.

6.
Nano Lett ; 23(21): 10066-10073, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37846924

Prussian white (PW) is considered as a promising cathode material for potassium-ion batteries (KIBs) due to its low cost and high theoretical capacity. However, the high water content and structural defects and the strict synthesis conditions of PW lead to its unsatisfactory cycling performance and low specific capacity, hindering its practical applications. Herein, a template-engaged reduction method is proposed, using MIL-88B(Fe) as a self-template and KI as the reducing agent to prepare K-rich PW with low defects and water content. Furthermore, the hierarchical porous spindle-like morphology can be inherited from the precursor, furnishing sufficient active sites and reducing the ion diffusion path. Consequently, when applied as a KIB cathode material, spindle-like PW (K1.72Fe[Fe(CN)6]0.96·0.342H2O) manifested remarkable potassium storage properties. Notably, a full cell assembled by the spindle-like PW cathode and graphite anode exhibited a large energy density of ∼216.7 Wh kg-1, demonstrating its huge potential for energy storage systems.

7.
Sci Bull (Beijing) ; 68(16): 1819-1842, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37516661

Magnesium-ion batteries (MIBs) are considered strong candidates for next-generation energy-storage systems owing to their high theoretical capacity, divalent nature and the natural abundancy of magnesium (Mg) resources on Earth. However, the development of MIBs has been mainly limited by the incompatibility of Mg anodes with several Mg salts and conventional organic-liquid electrolytes. Therefore, one major challenge faced by MIBs technology lies on developing safe electrolytes, which demonstrate appropriate electrochemical voltage window and compatibility with Mg anode. This review discusses the development of MIBs from the point-of-view of the electrolyte syntheses. A systematic assessment of promising electrolyte design strategies is proposed including liquid and solid-state electrolytes. Liquid-based electrolytes have been largely explored and can be categorized by solvent-type: organic solvent, aqueous solvent, and ionic-liquids. Organic-liquid electrolytes usually present high electrochemical and chemical stability but are rather dangerous, while aqueous electrolytes present high ionic conductivity and eco-friendliness but narrow electrochemical stability window. Some ionic-liquid electrolytes have proved outstanding performance but are fairly expensive. As alternative to liquid electrolytes, solid-state electrolytes are increasingly attractive to increase energy density and safety. However, improving the ionic conductivity of Mg ions in these types of electrolytes is extremely challenging. We believe that this comprehensive review will enable researchers to rapidly grasp the problems faced by electrolytes for MIBs and the electrolyte design strategies proposed to this date.

8.
Small ; 19(34): e2301954, 2023 Aug.
Article En | MEDLINE | ID: mdl-37086143

Magnesium-ion batteries (MIBs) are emerging as potential next-generation energy storage systems due to high security and high theoretical energy density. Nevertheless, the development of MIBs is limited by the lack of cathode materials with high specific capacity and cyclic stability. Currently, transition metal sulfides are considered as a promising class of cathode materials for advanced MIBs. Herein, a template-based strategy is proposed to successfully fabricate metal-organic framework-derived in-situ porous carbon nanorod-encapsulated CuS quantum dots (CuS-QD@C nanorods) via a two-step method of sulfurization and cation exchange. CuS quantum dots have abundant electrochemically active sites, which facilitate the contact between the electrode and the electrolyte. In addition, the tight combination of CuS quantum dots and porous carbon nanorods increases the electronic conductivity while accelerating the transport speed of ions and electrons. With these architectural and compositional advantages, when used as a cathode material for MIBs, the CuS-QD@C nanorods exhibit remarkable performance in magnesium storage, including a high reversible capacity of 323.7 mAh g-1 at 100 mA g-1 after 100 cycles, excellent long-term cycling stability (98.5 mAh g-1 after 1000 cycles at 1.0 A g-1 ), and satisfying rate performance (111.8 mA g-1 at 1.0 A g-1 ).

9.
Nano Lett ; 23(2): 694-700, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36629141

Layered transition-metal (TM) oxides have drawn ever-growing interest as positive electrode materials in potassium-ion batteries (PIBs). Nevertheless, the practical implementation of these positive electrode materials is seriously hampered by their inferior cyclic property and rate performance. Reported here is a self-templating strategy to prepare homogeneous P2-K0.6CoO2 (KCO) microcubes. Benefiting from the unusual microcube architecture, the interface between the electrolyte and the active material is considerably diminished. As a result, the KCO microcubes manifest boosted electrochemical properties for potassium storage including large reversible capacity (87.2 mAh g-1 under 20 mA g-1), superior rate performance, and ultralong cyclic steady (an improved capacity retention of 86.9% under 40 mA g-1 after 1000 cycles). More importantly, the fabrication approach can be effectively extended to prepare other layered TM oxide (P3-K0.5MnO2, P3-K0.5Mn0.8Fe0.2O2, P2-K0.6Co0.67Mn0.33O2, and P2-K0.6Co0.66Mn0.17Ni0.17O2) microcubes and nonlayered TM oxide (KFeO2) microcubes.

10.
J Colloid Interface Sci ; 635: 417-426, 2023 Apr.
Article En | MEDLINE | ID: mdl-36599240

NaTi2(PO4)3 (NTP) is a promising anode material for sodium-ion batteries (SIBs). It has drawn wide attention because of its stable three-dimensional NASICON-type structure, proper redox potential, and large accommodation space for Na+. However, the inherent low electronic conductivity of the phosphate framework reduces its charge transfer kinetics, thus limiting its exploitation. Therefore, this paper proposes a material with carbon-coated porous NTP olive-like nanospheres (p-NTP@C) to tackle the issues above. Based on experimental data and theoretical calculations, the porous structure of the material is found to be able to provide more active sites and shorten the Na+ diffusion distance. In addition, the carbon coating can effectively improve the electron and Na+ diffusion kinetics. As the anode material for SIBs, the p-NTP@C olive-like nanospheres exhibit a high reversible capacity (127.3 mAh g-1 at 0.1 C) and ultrastable cycling performance (84.8% capacity retention after 10,000 cycles at 5 C). Furthermore, the sodium-ion full cells, composed of p-NTP@C anode and Na3V2(PO4)2F3@carbon cathode, also deliver excellent performance (75.7% capacity retention after 1000 cycles at 1 C). In brief, this nanostructure design provides a viable approach for the future development of long-life and highly stable NASICON-type anode materials.

11.
Sci Bull (Beijing) ; 67(21): 2208-2215, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36545996

Orthorhombic iron-based fluorosulfate KFeSO4F represents one of the most promising cathode materials due to its high theoretical capacity, high voltage plateau, unique three-dimensional conduction pathway for potassium ions, and low cost. Yet, the poor thermostability and intrinsic low electronic conductivity of KFeSO4F challenge its synthesis and electrochemical performance in potassium-ion batteries (PIBs). Herein, we report, for the first time, judicious crafting of carbon nanotubes (CNTs)-interwoven KFeSO4F microspheres in diethylene glycol (DEG) (denoted KFSF@CNTs/DEG) as the cathode to render high-performance PIBs, manifesting an outstanding reversible capacity of 110.9 mAh g-1 at 0.2 C, a high working voltage of 3.73 V, and a long-term capacity retention of 93.9% after 2000 cycles at 3 C. Specifically, KFSF@CNTs/DEG microspheres are created via introducing CNTs into the precursors DEG solution at relatively low temperature. Notably, the strong binding of the ether groups in DEG retards the nucleation and growth of KFSF, leading to in situ formation of microspheres with CNTs interwoven within KFSF crystals, thereby greatly enhancing electronic conductivity of KFSF. Intriguingly, the remarkable electrochemical performance of KFSF@CNTs/DEG cathode is found to stem from the massively exposed (100) plane and uniform interpenetration of CNTs inside KFSF microsphere. More importantly, in situ X-ray diffraction and electrochemical kinetics study unveil outstanding structural stability and high K+ diffusion rate of KFSF@CNTs/DEG. Finally, the KFSF@CNTs/DEG//graphite full cell displays a large energy density of ∼243 Wh kg-1. Such simple route to KFSF@CNTs/DEG highlights the robustness of creating inexpensive CNTs-interwoven polyanionic cathodes for high-performance PIBs.

12.
Sci Bull (Beijing) ; 67(2): 151-160, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-36546008

SnS has been extensively investigated as a potential anode material in potassium-ion batteries (PIBs) for its high theoretical capacity. Nonetheless, it suffers a limited cyclic lifespan owing to its poor electronic conductivity and huge volume expansion. This work proposed a facile approach where SnS nanocrystals are confined in the walls of hollow multichannel carbon nanofibers (denoted SnS@HMCFs) to tackle the issues above. In contrast to previous studies, impregnated ultrafine SnS nanocrystals in HMCFs compactly can increase the SnS loading number per unit area of the carbon matrix. Furthermore, the unique hollow multichannel carbon nanofibers are used as a robust carrier to uniformly distribute the SnS nanocrystals. This can significantly accelerate K+/electron transport, resulting in large specific capacity, outstanding rate performance, and steady cycling property for PIBs. High reversible capacities of 415.5 mAh g-1 at 0.1 A g-1 after 300 cycles and 245.5 mAh g-1 at 1 A g-1 after 1000 cycles are retained, suggesting great potential of SnS@HMCFs as a negative electrode material for PIBs. Additionally, when the SnS@HMCF anode is assembled with the KVPO4F cathode, the obtained full cell shows a large discharge capacity of 165.3 mAh g-1 after 200 cycles at 0.1 A g-1.

13.
Sensors (Basel) ; 22(20)2022 Oct 17.
Article En | MEDLINE | ID: mdl-36298245

A metal atomizing sheet with a group of micro-tapered holes is the core constituent of a piezoelectric atomizer. However, the diameters of large-end and small-end micro-tapered holes in industrial applications deviate from the design values by 15.25% and 15.83%, respectively, which adversely impacts the effect of atomizers. In this study, two main factors that influence the machining quality of tapered holes, the external vibration disturbance and the internal system errors inside the laser processor, were explored; consequently, the vibration model of the machining device and the laser drilling model were established, respectively. Based on the models and the experimental results, it was found that the errors in diameter caused by these two factors accounted for 20% and 67.87% of the total deviation, respectively. Finally, an improved method was proposed, where a damping system was added to the machining device, and the diameter of the initial laser spot was corrected. The measurement results of tapered holes machined by the improved method showed that the deviation of the large diameters and the small diameters from the design values declined to 4.85% and 4.83%, respectively. This study lays a foundation for the high-precision and large-scale industry of atomizing sheets, and provides a new research direction for enhancing the performance of atomizers.

14.
Sensors (Basel) ; 22(17)2022 Sep 01.
Article En | MEDLINE | ID: mdl-36081071

Wankel pump designs have not been fully established, with existing designs limited to bicornous rotor pumps and triangular rotor pumps. Here, on the basis of Wankel geometry, we present a tetragonal rotor pump with a three-lobe epicycloid and its conjugate envelope as chamber and rotor profile. First, the design method and basic working principle of the pump are introduced. Four groups of prototypes with different shape factors were manufactured, and their flow and pressure characteristics were experimentally studied. Numerical study showed that the flow rate irregularity of the pump is lower than that of existing Wankel pumps. Finally, the feasibility the pump for mixing applications was verified by a flow field observation experiment. The work in this paper provides a new type of rotary displacement pump design, representing an study of reverse application of a Wankel engine structure.

15.
Nano Lett ; 22(12): 4933-4940, 2022 Jun 22.
Article En | MEDLINE | ID: mdl-35671041

With high theoretical capacity and operating voltage, KVPO4F is a potential high energy density cathode material for potassium-ion batteries. However, its performance is usually limited by F loss, poor electronic conductivity, and unsteady electrode/electrolyte interface. Herein, a simple one-step sintering process is developed, where vanadium-oxalate-phosphite/phosphate frameworks and fluorinated polymer are used to synthesize carbon-coated KVPO4F nanoplates. It is found that the V-F-C bond generated by fluorinated-polymer-derived carbon at the interface of KVPO4F/C nanoplates diminishes the F loss, as well as enhances K-ions migration ability and the electronic conductivity of KVPO4F. The as-synthesized KVPO4F/C cathode delivers a reversible capacity of 106.5 mAh g-1 at 0.2 C, a high working voltage of 4.28 V, and a rate capability with capacity of 73.8 mAh g-1 at the ultrahigh current density of 100 C. In addition, a KVPO4F/C//soft carbon full cell exhibits a high energy density of 235.5 Wh kg-1.

16.
J Phys Chem Lett ; 13(25): 5726-5733, 2022 Jun 30.
Article En | MEDLINE | ID: mdl-35713610

As a typical layered transition metal chalcogenide, VS4 is considered as a promising cathode material for advanced magnesium-ion batteries. However, the poor electronic conductivity and severe polarization effect restrict its practical applications. Herein, we report a betaine-assisted solvothermal strategy to coat VS4 nanoblocks on the surface of carbon nanotubes (CNTs), obtaining unique core-shell-structured CNT@VS4 nanonecklaces. As a result of the morphology-controlling effect of betaine, VS4 exhibits an unusual nanoblock morphology, which renders abundant active sites and promotes the contact between the electrode and electrolyte. CNTs serve as a highly conductive skeleton, combining with the VS4 nanoblocks and ensuring their uniform distribution. As a benefit from the synergistic effect of abundant active sites and electron-conductive highways, the as-synthesized CNT@VS4 nanonecklaces manifest remarkable performance for magnesium storage, including a large reversible capacity of 170 mAh g-1 at 0.1 A g-1, outstanding cycle stability (76.3 mAh g-1 after 800 cycles at 0.5 A g-1), and superior rate performance (77.2 mAh g-1 at 2 A g-1).

17.
Chemistry ; 28(52): e202201562, 2022 Sep 16.
Article En | MEDLINE | ID: mdl-35704028

Layered oxide cathodes have demonstrated great potential for potassium-ion batteries (PIBs) on account of high reversible capacity, appropriate diffusion paths, and low cost. However, their electrochemical performance in PIBs is generally worse than that in lithium-ion batteries due to large structural changes and deformations during charging and discharging. To improve their potassium storage performance, a series of strategies have been developed in recent studies. In this review, we summarize the latest advancements in layered oxide cathodes for PIBs through different crystal regulation strategies, including transition metal layer doping, potassium content optimization, oxygen partial substitution, functional morphology construction and air stability improvement. Meanwhile, the relationship between the electrochemical properties and structural evolution of these modified cathodes is also investigated. In addition, the challenges and prospects of these layered oxide cathodes in PIBs are analyzed in detail, providing constructive insights for future applications of PIBs.

18.
J Colloid Interface Sci ; 615: 840-848, 2022 Jun.
Article En | MEDLINE | ID: mdl-35182854

As a desirable candidate for lithium-ion batteries, potassium-ion batteries (PIBs) have aroused great interest because of their low cost and high power and energy densities. However, the insertion/extraction of K+ with a large radius (1.38 Å) usually bring about the destruction of the electrode materials. Here, ultrafine Fe7S8 nanocrystals are successfully implanted into hollow carbon nanospheres (Fe7S8@HCSs) via a facile solvothermal method and subsequent novel low-temperature sulfurization, which avoid the aggregation of Fe7S8 nanoparticles produced during high-temperature sulfidation. The ultrafine Fe7S8 nanoparticles and hollow carbon spheres can not only buffer the severe expansion/shrinkage of electrode materials caused by the repeated insertion/extraction of K+, but also provide additional accessible pathways for the high-rate K+ transmission. When tested as an anode material for PIBs, Fe7S8@HCSs achieve impressive K+ storage capacity of 523.2 mAh g-1 at 0.1 A g-1 after 100 cycles and remarkable rate capacity of 176.3 mAh g-1 at 5 A g-1. Further, assembling this anode with a K2NiFe(CN)6 cathode yields stable cycling performance, revealing its great potential for large-scale energy storage applications.

19.
Chem Commun (Camb) ; 57(87): 11497-11500, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34651621

We demonstrate an economical polytetrafluoroethylene-assisted fluorination method to synthesize three binary sodium-rich fluorides Na2MVF7 (M = Mn, Fe, and Co). The optimal Na2FeVF7 cathode delivers a high reversible capacity of 146.5 mA h g-1 based on active Fe2+/Fe3+ and V3+/V4+ redox reactions in sodium-ion batteries. A steady cycling performance with a high capacity retention of 95% over 200 cycles is achieved owing to the negligible structural change during Na+ insertion/extraction.

20.
Angew Chem Int Ed Engl ; 60(48): 25575-25582, 2021 Nov 22.
Article En | MEDLINE | ID: mdl-34559443

Most potassium-ion battery (PIB) cathode materials have deficient structural stability because of the huge radius of potassium ion, leading to inferior cycling performance. We report the controllable synthesis of a novel low-strain phosphate material K3 (VO)(HV2 O3 )(PO4 )2 (HPO4 ) (denoted KVP) nanorulers as an efficient cathode for PIBs. The as-synthesized KVP nanoruler cathode exhibits an initial reversible capacity of 80.6 mAh g-1 under 20 mA g-1 , with a large average working potential of 4.11 V. It also manifests an excellent rate property of 54.4 mAh g-1 under 5 A g-1 , with a high capacity preservation of 92.1 % over 2500 cycles. The outstanding potassium storage capability of KVP nanoruler cathode originates from a low-strain K+ uptake/removal mechanism, inherent semiconductor characteristic, and small K+ migration energy barrier. The high energy density and prolonged cyclic stability of KVP nanorulers//polyaniline-intercalated layered titanate full battery verifies the superiority of KVP nanoruler cathode in PIBs.

...