Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065015

ABSTRACT

Seven new lanthanide coordination polymers, namely [Ln(cpt)3H2O)]n(Ln = La (1), Pr (2), Sm (3), Eu (4), Gd (5), Dy (6), and Er (7)), which were synthesized under hydrothermal conditions using 4'-(4-(4-carboxyphenyloxy)phenyl)-4,2':6',4'-tripyridine (Hcpt) as the ligand. The crystal structures of these seven complexes were determined using single-crystal X-ray diffraction, and they were found to be isostructural, crystallizing in the triclinic P1- space group. The Ln(III) ions were nine-coordinated with tricapped trigonal prism coordination geometry. The Ln(III) cations were coordinated by carboxylic and pyridine groups from (cpt)- ligands, forming one-dimensional ring-chain structures. Furthermore, the luminescent properties of complexes 1-7 were investigated using fluorescent spectra in the solid state. The fluorescence sensing experiments demonstrated that complex 4 exhibits high selectivity and sensitivity for detecting Co2+, Cu2+ ions, and nitrobenzene. Moreover, complex 3 shows good capability for detecting Cu2+ ions and nitrobenzene. Additionally, the sensing mechanism was also thoroughly examined through theoretical calculations.

2.
Article in English | MEDLINE | ID: mdl-39023726

ABSTRACT

A thermal synthesis method was employed in this work to prepare CdS/TiO2 corn straw biochar photocatalytic composite materials suitable for synergistic hydrogen production with the photocatalytic reduction of CO2. The structure and synergistic reaction of these composite materials were characterized by its photogenerated electron transfer process. Compared with pure TiO2, the energy band gap of the optimal CdS/TiO2 corn straw biochar composite material was reduced to 2.89 eV. The heterostructure coupling between TiO2 and CdS in the biochar accelerated the transfer of photogenerated electrons and reduced the recombination rate of photogenerated electrons and holes. Under visible light irradiation, the photocatalytic H2 yield of this CdS/TiO2 corn straw-derived biochar composite material was 1200 µmol·h-1·g-1, the CO yield was 150 µmol·h-1·g-1, and the CH4 yield was 55 µmol·h-1·g-1. The key to this synergistic reaction is the formation of heterojunctions between CdS and TiO2 as well as the rapid oxidation of holes in the composite material caused by the doping of biochar.

3.
Environ Sci Pollut Res Int ; 31(30): 42593-42613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900403

ABSTRACT

The prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors. Furthermore, the influence of electrode materials and electrolyte types on the deterioration process is also investigated. The importance of electrode materials in ethylene oxide has been widely recognised, and therefore, the focus of current research is mainly on the development of innovative electrode materials, the design of superior electrode structures, and the improvement of efficient electrode preparation methods. In order to improve the degradation efficiency of PFOS in electrochemical systems, it is essential to study the oxidation mechanism of PFOS in the presence of ethylene oxide. Furthermore, the factors influencing the efficacy of PFAS treatment, including current density, energy consumption, initial concentration, and other parameters, are clearly delineated. In conclusion, this study offers a comprehensive overview of the potential for integrating EO technology with other water treatment technologies. The continuous development of electrode materials and the integration of other water treatment processes present a promising future for the widespread application of ethylene oxide technology.


Subject(s)
Electrodes , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Fluorocarbons/chemistry , Electrochemical Techniques , Water Purification/methods , Wastewater/chemistry
4.
J Hazard Mater ; 475: 134871, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876020

ABSTRACT

Many studies have shown that Peroxymonosulfate (PMS) works synergistically with ferrate (Fe(VI)) to remove refractory organic compounds in a few minutes. However, little has been reported on the combined effects of peroxydisulfate (PDS) and Fe(VI). Since PDS is stable and cost effective, it is of practical significance to study the reaction mechanism and conditions of the PDS/Fe(VI) system. The results of the study indicate that the intermediate Fe(II) is formed during the decomposition of Fe(VI), which is then rapidly oxidized. Due to the asymmetry of the PMS molecular structure, PMS can rapidly trap Fe(II) (kPMS/Fe(II)= 3 × 104 M-1∙s-1), whereas PDS cannot (kPDS/Fe(II)= 26 M-1∙s-1). Hydroxylamine hydrochloride (HA) can reduce Fe(VI) and Fe(III) to Fe(II) to excite PDS to produce SO4•-. Acetate helps to detect Fe(II), but does not help PDS to trap Fe(II). Active species such as SO4•-, •OH, 1O2, and Fe(IV), Fe(V) are present in both systems, but in different amounts. In the PMS/Fe(Ⅵ) system, all these active species react with ibuprofen (IBP) and degrade IBP within several minutes. The effects of the initial pH, PMS or Fe(VI) dosage, and different amounts of IBP on the removal rate of IBP were investigated. According to the intermediates detected by the GC-MS, the degradation process of IBP includes hydroxylation, demethylation and single bond breakage. The degradation pathways of IBP were proposed. The degradation of IBP in tap water and Songhua River was also investigated. In actual water treatment, the dosage needs to be increased to achieve the same results. This study provides a basis and theoretical support for the application of PMS/Fe(Ⅵ) and PDS/Fe(VI) system in water treatment.

5.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794748

ABSTRACT

The high prevalence of constipation after fracture surgery brings intolerable discomfort to patients on the one hand, and affects post-surgery nutrient absorption on the other hand, resulting in poor prognosis. Given the acknowledged probiotic properties of Lactobacillus rhamnosus, 100 fracture patients with post-surgery constipation were centrally enrolled and administered orally with L. rhamnosus JYLR-127 to assess the efficacy of probiotic-adjuvant therapy in alleviating post-fracture constipation symptoms. The results showed that L. rhamnosus JYLR-127 improved fecal properties, promoted gastrointestinal recovery, and relieved constipation symptoms, which were mainly achieved by elevating Firmicutes (p < 0.01) and descending Bacteroidetes (p < 0.001), hence remodeling the disrupted intestinal microecology. In addition, blood routine presented a decrease in C-reactive protein levels (p < 0.05) and an increase in platelet counts (p < 0.05) after probiotic supplementation, prompting the feasibility of L. rhamnosus JYLR-127 in anti-inflammation, anti-infection and hemorrhagic tendency prevention after fracture surgery. Our study to apply probiotics in ameliorating constipation after fracture surgery is expected to bless the bothered patients, and provide broader application scenarios for L. rhamnosus preparations.


Subject(s)
Constipation , Fractures, Bone , Lacticaseibacillus rhamnosus , Postoperative Complications , Probiotics , Humans , Constipation/therapy , Probiotics/therapeutic use , Probiotics/administration & dosage , Female , Male , Middle Aged , Postoperative Complications/etiology , Single-Blind Method , Fractures, Bone/surgery , Fractures, Bone/complications , Adult , Gastrointestinal Microbiome , Feces/microbiology , Aged , Treatment Outcome
6.
J Mater Chem B ; 12(21): 5128-5139, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38699827

ABSTRACT

Optimizing the antibacterial effectiveness of copper ions while reducing environmental and cellular toxicity is essential for public health. A copper chelate, named PAI-Cu, is skillfully created using a specially designed carboxyl copolymer (a combination of acrylic and itaconic acids) with copper ions. PAI-Cu demonstrates a broad-spectrum antibacterial capability both in vitro and in vivo, without causing obvious cytotoxic effects. When compared to free copper ions, PAI-Cu displays markedly enhanced antibacterial potency, being about 35 times more effective against Escherichia coli and 16 times more effective against Staphylococcus aureus. Moreover, Gaussian and ab initio molecular dynamics (AIMD) analyses reveal that Cu+ ions can remain stable in the carboxyl compound's aqueous environment. Thus, the superior antibacterial performance of PAI-Cu largely stems from its modulation of copper ions between mono- and divalent states within the Cu-carboxyl chelates, especially via the carboxyl ligand. This modulation leads to the generation of reactive oxygen species (˙OH), which is pivotal in bacterial eradication. This research offers a cost-effective strategy for amplifying the antibacterial properties of Cu ions, paving new paths for utilizing copper ions in advanced antibacterial applications.


Subject(s)
Anti-Bacterial Agents , Chelating Agents , Copper , Escherichia coli , Microbial Sensitivity Tests , Staphylococcus aureus , Copper/chemistry , Copper/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Staphylococcus aureus/drug effects , Animals , Mice , Reactive Oxygen Species/metabolism , Molecular Structure
7.
BMC Musculoskelet Disord ; 25(1): 388, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762738

ABSTRACT

BACKGROUND: A variety of measurement methods and imaging modalities are in use to quantify the morphology of lateral femoral condyle (LFC), but the most reliable method remains elusive in patients with lateral patellar dislocation (LPD). The purpose of this study was to determine the intra- and inter-observer reliability of different measurement methods for evaluating the morphology of LFC on different imaging modalities in patients with LPD. METHODS: Seventy-three patients with LPD were included. Four parameters for quantifying the morphology of LFC were retrospectively measured by three observers on MRI, sagittal CT image, conventional radiograph (CR), and three-dimensional CT (3D-CT). The intra-class correlation coefficient was calculated to determine the intra- and inter-observer reliability. Bland-Altman analysis was conducted to identify the bias between observers. RESULTS: The lateral femoral condyle index (LFCI) showed better intra- and inter-observer reliability on MRI and 3D-CT than on CR and sagittal CT images. The mean difference in the LFCI between observers was lowest on 3D-CT (0.047), higher on MRI (0.053), and highest on sagittal CT images (0.062). The LFCI was associated with the lateral femoral condyle ratio (ρ = 0.422, P = 0.022), lateral condyle index (r = 0.413, P = 0.037), and lateral femoral condyle distance (r = 0.459, P = 0.014). The LFCI could be reliably measured by MRI and 3D-CT. CONCLUSION: The LFCI could be reliably measured by MRI and 3D-CT. The LFCI was associated with both the height and length of LFC and could serve as a comprehensive parameter for quantifying the morphology of LFC in patients with LPD.


Subject(s)
Femur , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Observer Variation , Patellar Dislocation , Tomography, X-Ray Computed , Humans , Female , Male , Reproducibility of Results , Patellar Dislocation/diagnostic imaging , Magnetic Resonance Imaging/methods , Femur/diagnostic imaging , Retrospective Studies , Young Adult , Adult , Imaging, Three-Dimensional/methods , Adolescent
8.
J Phys Chem Lett ; 15(17): 4679-4685, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38656159

ABSTRACT

Determining the true or false chirality of a system is essential for the design of advanced chiral materials and for improving their applications. Typically, a magnetic field would cause false optical activity in the chiral material system, thus confusing the true chirality's influence. Here, we provide a simple way to uncover the true and false chirality in chiral ferrimagnetic nanoparticles (FNPs) by using the gel as a rigid frame. The remnant local magnetic field of the FNP gel can be easily adjusted by an external magnetic field or by controlling the concentration of the FNPs. Moreover, the potential application of the FNP gel is detected by induced magnetic circularly polarized luminescence. This work provides deep insight into the true and false chirality in magnetic nanosystems and offers a strategy to construct new optic elements with an adjustable local magnetic field.

9.
ACS Nano ; 18(12): 8885-8905, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38465890

ABSTRACT

As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.


Subject(s)
Intervertebral Disc Degeneration , Mitochondrial Diseases , Nanoparticles , Rats , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Manganese/metabolism , Oxidative Stress , Mitochondria , Phenols , Mitochondrial Diseases/metabolism , Gallic Acid
10.
ACS Nano ; 18(6): 5051-5067, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38306400

ABSTRACT

Modulating the properties of biomaterials in terms of the host immune response is critical for tissue repair and regeneration. However, it is unclear how the preference for the cellular microenvironment manipulates the chiral immune responses under physiological or pathological conditions. Here, we reported that in vivo and in vitro oligopeptide immunosuppressive modulation was achieved by manipulation of macrophage polarization using chiral tetrapeptide (Ac-FFFK-OH, marked as FFFK) supramolecular polymers. The results suggested that chiral FFFK nanofibers can serve as a defense mechanism in the restoration of tissue homeostasis by upregulating macrophage M2 polarization via the Src-STAT6 axis. More importantly, transiently acting STAT6, insufficient to induce a sustained polarization program, then passes the baton to EGR2, thereby continuously maintaining the M2 polarization program. It is worth noting that the L-chirality exhibits a more potent effect in inducing macrophage M2 polarization than does the D-chirality, leading to enhanced tissue reconstruction. These findings elucidate the crucial molecular signals that mediate chirality-dependent supramolecular immunosuppression in damaged tissues while also providing an effective chiral supramolecular strategy for regulating macrophage M2 polarization and promoting tissue injury repair based on the self-assembling chiral peptide design.


Subject(s)
Biocompatible Materials , Macrophages , Macrophages/metabolism , Biocompatible Materials/pharmacology , Peptides , Stereoisomerism , STAT6 Transcription Factor/metabolism , Immunosuppressive Agents/pharmacology
11.
Small ; 20(2): e2305949, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658496

ABSTRACT

Traditional alternating current filter based on aluminum electrolytic capacitors (AECs) suffer from abrupt drop of filtering capability at ultra-low temperatures (≤-30 °C), which greatly hinders the reliable working of electronics at extremely cold conditions. Herein, an ultra-low-temperature alternating current (AC) filter for the first time enabled by high-frequency supercapacitor based on covalently bonded hollow carbon onion-graphene hybrid structure is reported. It is found that the covalent bonding junctions enable high electronic conductivity and efficient ion adsorption/desorption behavior in the hybrid structure. Moreover, the hybrid structure owns positive curvature and shallows pores for fast ion diffusion kinetics. Consequently, the supercapacitor exhibits a record short resistor-capacitor time constant (τRC ) of 0.098 ms at 120 Hz at room temperature. Combining with low-melting-point electrolyte, the supercapacitor possesses excellent filtering capability and can output stable direct current signal with low fluctuation coefficients in a temperature range of -50 to 0 °C. More interestingly, the filter presents high negative phase angle, low dissipation factor, short τRC , and high capacitance retention below -30 °C, whereas AEC cannot work properly owing to its phase angle<45°. This work realizes the fabrication of an ultra-low-temperature AC filter, which presents a critical step forward for promoting the development of ultra-low-temperature electronics.

12.
Small ; 20(13): e2308167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37953455

ABSTRACT

Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.


Subject(s)
Intervertebral Disc Degeneration , Nanoparticles , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Reactive Oxygen Species/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Gasdermins , Inflammasomes/metabolism , Mitochondria/metabolism , Polyphenols/pharmacology
13.
Adv Sci (Weinh) ; 11(1): e2304871, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984876

ABSTRACT

Epidermal dry electrodes with high skin-compliant stretchability, low bioelectric interfacial impedance, and long-term reliability are crucial for biopotential signal recording and human-machine interaction. However, incorporating these essential characteristics into dry electrodes remains a challenge. Here, a skin-conformal dry electrode is developed by encapsulating kirigami-structured poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polyvinyl alcohol (PVA)/silver nanowires (Ag NWs) film with ultrathin polyurethane (PU) tape. This Kirigami-structured PEDOT:PSS/PVA/Ag NWs/PU epidermal electrode exhibits a low sheet resistance (≈3.9 Ω sq-1 ), large skin-compliant stretchability (>100%), low interfacial impedance (≈27.41 kΩ at 100 Hz and ≈59.76 kΩ at 10 Hz), and sufficient mechanoelectrical stability. This enhanced performance is attributed to the synergistic effects of ionic/electronic current from PEDOT:PSS/Ag NWs dual conductive network, Kirigami structure, and unique encapsulation. Compared with the existing dry electrodes or standard gel electrodes, the as-prepared electrodes possess lower interfacial impedance and noise in various conditions (e.g., sweat, wet, and movement), indicating superior water/motion-interference resistance. Moreover, they can acquire high-quality biopotential signals even after water rinsing and ultrasonic cleaning. These outstanding advantages enable the Kirigami-structured PEDOT:PSS/PVA/Ag NWs/PU electrodes to effectively monitor human motions in real-time and record epidermal biopotential signals, such as electrocardiogram, electromyogram, and electrooculogram under various conditions, and control external electronics, thereby facilitating human-machine interactions.


Subject(s)
Nanowires , Humans , Electric Impedance , Nanowires/chemistry , Reproducibility of Results , Silver/chemistry , Polyvinyl Alcohol , Water
14.
Small ; 20(22): e2308295, 2024 May.
Article in English | MEDLINE | ID: mdl-38100287

ABSTRACT

Developing functional medical materials is urgent to treat diabetic wounds with a high risk of bacterial infections, high glucose levels and oxidative stress. Here, a smart copper-based nanocomposite acidic spray has been specifically designed to address this challenge. This copper-based nanocomposite is pH-responsive and has multienzyme-like properties. It enables the spray to effectively eliminate bacteria and alleviate tissue oxidative pressure, thereby accelerating the healing of infected diabetic wounds. The spray works by generating hydroxyl radicals through catalysing H2O2, which has a high sterilization efficiency of 97.1%. As alkaline micro-vessel leakage neutralizes the acidic spray, this copper-based nanocomposite modifies its enzyme-like activity to eliminate radicals. This reduces the level of reactive oxygen species in diabetic wounds by 45.3%, leading to a similar wound-healing effect between M1 diabetic mice and non-diabetic ones by day 8. This smart nanocomposite spray provides a responsive and regulated microenvironment for treating infected diabetic wounds. It also offers a convenient and novel approach to address the challenges associated with diabetic wound healing.


Subject(s)
Copper , Diabetes Mellitus, Experimental , Polyphenols , Wound Healing , Wound Healing/drug effects , Copper/chemistry , Copper/pharmacology , Animals , Mice , Polyphenols/pharmacology , Polyphenols/chemistry , Nanocomposites/chemistry , Bacterial Infections/drug therapy , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism
15.
Mediators Inflamm ; 2023: 3706421, 2023.
Article in English | MEDLINE | ID: mdl-37789884

ABSTRACT

Introduction: Osteoarthritis (OA) is the most common degenerative joint disorder. Prior studies revealed that activation of NLRP3 inflammasome could promote the activation and secretion of interleukin-1ß (IL-1ß), which has an adverse effect on the progression of OA. Betulinic acid (BA) is a compound extract of birch, whether it can protect against OA and the mechanisms involved are still unknown. Materials and Methods: In vivo experiments, using gait analysis, ELISA, micro-CT, and scanning electron microscopy (SEM), histological staining, immunohistological (IHC) and immunofluorescence (IF) staining, and atomic force microscopy (AFM) to assess OA progression after intraperitoneal injection of 5 and 15 mg/kg BA in an OA mouse model. In vitro experiments, caspase-1, IL-1ß, and the N-terminal fragment of gasdermin D (GSDMD-NT) were measured in bone marrow-derived macrophages (BMDMs) by using ELISA, western blot, and immunofluorescence staining. Results: We demonstrated that OA progression can be postponed with intraperitoneal injection of 5 and 15 mg/kg BA in an OA mouse model. Specifically, BA postponed DMM-induced cartilage deterioration, alleviated subchondral bone sclerosis, and relieved synovial inflammation. In vitro studies, the activated NLRP3 inflammasome produces mature IL-1ß by facilitating the cleavage of pro-IL-1ß, and BA could inhibit the activation of NLRP3 inflammasome in BMDMs. Conclusions: Taken together, our analyses revealed that BA attenuates OA via limiting NLRP3 inflammasome activation to decrease the IL-1ß maturation and secretion.


Subject(s)
Inflammasomes , Osteoarthritis , Animals , Mice , Betulinic Acid , Disease Models, Animal , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoarthritis/drug therapy , Osteoarthritis/pathology
16.
Chemosphere ; 341: 140039, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660803

ABSTRACT

Emerging contaminants (ECs), which are present in water bodies, could cause global environmental and human health problems. These contaminants originate from various sources such as hospitals, clinics, households, and industries. Additionally, they can also indirectly enter the water supply through runoff from agriculture and leachate from landfills. ECs, specifically Pharmaceutical and personal care products (PPCPs), are causing widespread concern due to their contribution to persistent water pollution. Traditional approaches often involve expensive chemicals and energy or result in the creation of by-products. This study developed a practical and environmentally-friendly method for removing PPCPs, which involved combining and integrating various techniques. To implement this method, it was necessary to establish and used a field simulator based on the real-life scenario. Based on the data analysis, the average removal rates of COD, TP, TN, and NH4+-N were 57%, 59%, 63%, and 73%, respectively. the removal rate of PPCPs by CCWs was found to be 82.7% after comparing samples that were not treated by constructed wetlands and those that were treated. Combined constructed wetlands (CCWs) were found to effectively remove PPCPs from water. This is due to the combined action of plant absorption, absorption, and biodegradation by microorganisms living in the wetlands. Interestingly, the wetland plant reed had been shown to play an important role in removing these pollutants. Microbial degradation was the most important pathway for PPCPs removal in CCWs. Carbamazepine was selected as a typical PPCP for analysis. In addition, the microbial community structure of the composite filler was also investigated. High-throughput sequencing confirmed that the dominant bacteria had good adaptability to PPCPs. This technique not only reduced the potential environmental impact but also served as a foundation for further research on the use of constructed wetlands for the treatment of PPCPs contaminated water bodies and its large-scale implementation.


Subject(s)
Cosmetics , Wetlands , Humans , Temperature , Agriculture , Excipients
17.
J Mater Chem B ; 11(36): 8820, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37674435

ABSTRACT

Expression of concern for 'Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties' by Qingqing Yao et al., J. Mater. Chem. B, 2017, 5, 8532-8541, https://doi.org/10.1039/C7TB02114C.

18.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570600

ABSTRACT

Chiral surface is a critical mediator that significantly impacts interaction with biological systems on regulating cell behavior. To better understand how the properties of interfacial Chirality affect cell behavior and address the limitations of chiral materials for biomedical applications, in this review, we mainly focus on the recent developments of chiral bio-interfaces for the controllable and accurate guidance of chiral biomedical phenomena. In particular, we will discuss how cells or organisms sense and respond to the chiral stimulus, as well as the chirality mediating cell fate, tissue repair, and organism immune response will be reviewed. In addition, the biological applications of chirality, such as drug delivery, antibacterial, antivirus and antitumor activities, and biological signal detection, will also be reviewed. Finally, the challenges of chiral bio-interfaces for controlling biological response and the further application of interface chirality materials for biomedical will be discussed.


Subject(s)
Stereoisomerism , Cell Differentiation
20.
J Environ Manage ; 341: 118107, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37156022

ABSTRACT

Microplastics (MPs) in water pose a great threat to the ecological environment, but the impact of MPs on constructed wetland microbial fuel cells (CW-MFCs) has not been studied, so in order to fill the research gap and enrich the research in the field of microplastics, a 360-day experiment was designed to determine the operating status of CW-MFCs at different concentrations (0, 10, 100 and 1000 µg/L) polyethylene microplastics (PE-MPs) at different times, focusing on the changes of the CW-MFCs' ability to handle pollutants, power production performance and microbial composition. The results showed that with the accumulation of PE-MPs, the removal effect of COD and TP did not change significantly, and that the removal rate was maintained at around 90% and 77.9% respectively, within 120 d of operation. What's more, the denitrification efficiency increased (from 4.1% to 19.6%), but with the passage of time, it decreased significantly (from 7.16% to 31.9%) at the end of the experiment, while oxygen mass transfer rate was significantly increased. Further analysis showed that the accumulation of PE-MPs did not affect the current power density significantly with the changes of time and concentration, but the accumulation of PE-MPs would inhibit the exogenous electrical biofilm and increase the internal resistance, thereby affecting the electrochemical performance of the system. In addition, the results of microbial PCA showed that the composition and the activity of the microorganisms were changed under the action of PE-MPs, that the microbial community in CW-MFC showed a dose effect on the input of PE-MPs, and that the relative abundance of nitrifying bacteria with time was significantly affected by PE-MPs concentration. The relative abundance of denitrifying bacteria decreased over time, but PE-MPs promoted the reproduction of denitrifying bacteria, which was consistent with the changes in nitrification and denitrification rates. The removal modes of EP-MPs by CW-MFC include the adsorption and the electrochemical degradation, with two isothermal adsorption models of Langmuir and Freundlich being constructed in the experiment, and the electrochemical degradation process of EP-MPs being simulated. In summary, the results show that the accumulation of PE-MPs can induce a series of changes in substrate, microbial species and activity of CW-MFCs, which in turn affects the pollutant removal efficiency and power generation performance during its operation.


Subject(s)
Bioelectric Energy Sources , Microplastics , Plastics , Polyethylene , Wetlands , Wastewater , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL